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platform. Liberdyne is designed to compete with popular centralized 
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I. Background 
In 2009, the first modern decentralized cryptocurrency, Bitcoin, was created. It was based on a 
distributed ledger called a blockchain. 

In 2014, a fundamentally new blockchain platform – Ethereum – was born. Unlike Bitcoin, it was not 
strictly a cryptocurrency and was not primarily meant to become just a way of payment or a storage 
of value, but rather to be a decentralized virtual machine (also often called a distributed Turing 
machine, since its state machine used the Turing-complete instruction set) for running various 
kinds of applications, including so-called “smart contracts” that allowed value transfers and the 
automatic enforcement of other various types of obligations under multiple conditions. Native ETH 
tokens of the platform were considered a “fuel” for these applications, and blockchain was used as a 
database for storing applications as well as all concomitant data (accounts, messages, transactions, 
states etc.). 

As Ethereum offered many new ways of using blockchain technology, while at the same time 
retaining all the main capabilities of Bitcoin, it was called a “blockchain 2.0” platform. We believe 
such a classification to be incorrect, however. 

The problem is that, in our opinion, Ethereum and other decentralized virtual machine platforms 
should not be considered the next versions of Bitcoin-like payment platforms. They are, rather, 
separate parallel branches of decentralized ledger technology (DLT) and are connected horizontally, 
but not vertically. 

One may disagree with us and say that if Ethereum has all the functions that Bitcoin can offer, plus 
a lot more, it undoubtedly should be considered just the next version of Bitcoin. 

Though at first sight this statement may seem correct, actually it is the same as claiming that a 
motorbike is an improved version of a bicycle. Indeed, it has an engine and can go much faster, but 
only until the fuel runs out. No one would try to state that motorbikes should completely replace 
bicycles, despite the fact that they are both two-wheeled vehicles and motorcycles are obviously 
much more advanced. 

The same approach can be applied to systems based on blockchain technology – though 
decentralized virtual machine systems can perform many more functions than decentralized 
currency systems, they are not different versions of one concept, but rather two independent 
concepts, as they are optimized for completely different uses. 

For this reason, we believe that we should classify current DLT systems in a different way – what is 
commonly called a “blockchain 1.0” is rather a “decentralized currency system 1.0” (i.e. Bitcoin, 
Lightcoin and others), and what is commonly called a “blockchain 2.0” is a “decentralized virtual 
machine 1.0” (i.e. Ethereum), and most attempts to create a so-called “blockchain 3.0” are 
“decentralized virtual machines 2.0.” 

If we adopt this classification, it raises a question – what do we know about a “decentralized 
currency system 2.0”? Does it even exist? Indeed, there were some successful attempts to improve 
on Bitcoin architecture, which mostly concentrated on providing more anonymity and led to the 
creation of Monero, Zcash and several other platforms, but none of them made a step forward 
significant enough to be called a next-generation system. This is mostly due to the fact that, after 
the Ethereum release and its erroneous consideration as blockchain 2.0, developers abandoned the 
notion of a currency system and started working only on Turing machine platforms. This is quite 
logical, because why would someone develop the previous version of something when the next 
version is already on the market? 

The consequences of this incorrect classification can be clearly observed at present. We still have no 
decentralized platform that can truly accomplish the initial goal of cryptocurrency – actually being a 
convenient currency. We consider this circumstance to be one of the main reasons blockchain 
technology has not become widespread. In fact, the crypto community today is a rather closed 
system of professionals and enthusiasts, growing at a fairly moderate rate. 

https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/
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The absence of such a platform leads to a drop in interest in technology among the population. We 
are already witnessing prolonged market stagnation, and we strongly believe that the deployment 
of a next-generation cryptocurrency system, which can compete in practice with conventional 
means of payment, is the only way to make a breakthrough in the market and finally spread the 
technology on a global scale. 

In the following white paper, we are going to prove our ground and describe a next generation 
decentralized currency system capable of reaching the stated goal and becoming the first widely 
adopted mass market cryptocurrency. 

The following white paper is not meant to be used for academic purposes and does not adhere to 
academic style or methodology. Instead, we provide an informal description of the project, 
making it easier for a general audience to comprehend the design of the system. 

II. Problem Statement 

1. Creating a decentralized currency system 2.0 

Since we intend to create a decentralized currency system 2.0, we should firstly define what exact 
properties such a system should obtain, and we will instantly see why it has nothing to do with the 
notions of so-called blockchain 2.0 or blockchain 3.0 projects, as well as why Bitcoin and other so-
called blockchain 1.0 projects are not capable of obtaining these properties. 

Essentially, we can outline two main features that we want to see in a perfect decentralized 
payment system: it should be actually decentralized, and it should provide a user experience similar 
to existing centralized payment systems (or even better, if possible) to be able to offer serious 
competition. 

In our opinion, the properties required to accomplish these stated tasks are as follows: 

 

1) Guaranteed instant transaction processing 

In conventional centralized payment systems, any transaction sent to the network will be instantly 
processed by the operator, except when it does not fit the requirements (e.g. if the transaction 
amount exceeds the user balance) or a fault occurs. We should achieve the same properties in our 
blockchain system and design it in such a way that it can assure that all currently pending 
transactions are added to the next block. 

 

Blockchain 1.0 

In Bitcoin, transactions to be included in a block are selected by miners of their own will. There is no 
guarantee that any particular transaction will be ever included in the blockchain. As conceived by 
the creator, miners are incentivized to add transactions to a block by obtaining the commissions 
included in each transaction. The protocol, however, contains no strict rules about transaction 
selection; hence, miners are free to produce even empty blocks if they wish. 
  

https://blog.bitmex.com/empty-block-data-by-mining-pool/
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Blockchain 2.0 

Ethereum has the same rules of block creation as Bitcoin. This turned out to be a serious problem 
when in Q4 2018 we witnessed certain mining pools creating empty blocks (so-called spy mining). 
There is currently no solution for a possible censorship issue either. 

Blockchain 3.0 

Mostly the same situation can be seen in all widely known blockchain projects to date. Only the 
developers of DAG-based systems claim to provide processing of every transaction, but their design 
relies on altruistic behavior by participants, so it cannot be considered a proper solution to the 
problem in a Byzantine environment. Some blockchain developers also addressed the problem (e.g. 
Honey Badger), but no one fully provided the stated properties. 

 

2) Quick finality 

There should be no scenarios where users have to wait more than 10–20 seconds for a transaction to 
be completed. In centralized systems like Visa and MasterCard, it usually takes just a few seconds 
(although we should note that, even being confirmed, the transaction takes a lot more time to be 
finalized, but this does not significantly affect the consumer experience), so not many users will 
agree to wait much longer. 

Due to the distributed system’s specificity, we cannot match the speed of centralized systems 
(because we need to use a consensus protocol, which takes time to process and synchronize the 
data between peer nodes). We must, however, get as close as possible. 

 

Blockchain 1.0 

In Bitcoin, a transaction that has been put into the blockchain is considered to be reliably confirmed 
after six blocks have been mined on top of it. This takes more than an hour, which feels like an 
eternity in comparison to credit cards. 

Blockchain 2.0 

Ethereum has a much shorter block time (about 15 seconds), which is why its confirmations occur 
faster. However, Ethereum requires more confirmations to consider a transaction finalized with the 
same level of reliability as Bitcoin’s six confirmations. Generally, reliable finalization is reached within 
about 1–3 minutes, which is still unacceptable in terms of competition with centralized systems. 

Blockchain 3.0 

Processing speed is one of the parameters on which most developers concentrate, so the majority 
of current-generation projects claim to reach finality latency close to that of centralized systems or 
even surpassing them. 

Although the Byzantine fault tolerant (BFT) consensus model, which is used in most recent 
protocols, allows reliable finality to be reached quicker, most of these claims are based on heavily 
centralized system architecture. Nevertheless, matching our targeted latency boundary is feasible 
for many recent BFT-style designs. 

 

3) High transaction processing rate 

According to Visa, VisaNet is now processing an average 1,700 transactions per second (TPS). If we 
want to create a system that can be as widely used as conventional means of payment all around 

https://decrypt.co/3506/spy-mining-hits-ethereum
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-technology/visa-net-booklet.pdf
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the world, it should be capable of handling about 10,000 TPS. Moreover, this should be achieved 
within the main transaction database without second-layer technologies like payment channels. 

 

Blockchain 1.0 

Bitcoin can process about 7 TPS the with the current block size, which is extremely insufficient. 
Though this is nothing but an arbitrary choice, in any case, Bitcoin’s architecture cannot provide 
thousands of TPS on-chain with an acceptable decentralization level. Developers try to implement 
second-layer solutions (such as Lightning Network), but in our opinion it feels more like concealing 
the problem rather than solving it. 

Blockchain 2.0 

Ethereum can provide twice as much TPS as Bitcoin does, but this is not a significant improvement. 
There are also second-layer technologies (e.g. Raiden, Plasma), but generally, from the perspective 
of scalability, Ethereum has not improved much on Bitcoin. The situation will significantly change 
only when Ethereum 2.0 is finally presented. 

Blockchain 3.0 

Since scalability has recently become the unofficial primary benchmark of a blockchain system’s 
advancement level, developers started a contest for the highest TPS claim. Most of these claims 
have nothing to do with real-life scenarios, as they are based either on the capabilities of second-
layer solutions (which are theoretically limited only by hardware and the bandwidth of all nodes 
combined), or they do not take into account the actual possible hardware and bandwidth 
capabilities of peer nodes in a practical environment. 

A realistic throughput boundary that can be practically achieved by non-sharded designs with the 
current state of hardware and communication infrastructure lies roughly between 1,000–5,000 TPS 
and can be pushed further only with the help of sharding. 

 

4) Free transactions 

In centralized systems like Visa and MasterCard, commissions are charged to payment-system 
participants, but ordinary consumers can perform most operations free (consumers usually pay 
banks only for cards issued and account maintenance). Therefore, for most users, transactions seem 
to be free of charge. Only those few who actually know how the system works understand that the 
vendor includes a transaction fee in the price of a service or good. 

A free-of-charge payment system can become very attractive both to users and to businesses, 
especially for microtransactions. The absence of commissions can give it a very strong advantage 
over other payment systems of either centralized or decentralized design. 

 

Blockchain 1.0 

Bitcoin has rather high transaction fees, which grow even higher during periods of increased system 
load (for example, in December 2017). This may be partly caused by the Bitcoin Core developers’ 
refusal to increase block size. This situation has long been discussed by the community, but we still 
see no changes. Other altcoins of similar design will most likely face the same situation if they 
become similarly popular. The only popular platform that offers free transactions is IOTA, which is a 
DAG-based system. 
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Blockchain 2.0 

Ethereum has lower fees overall than Bitcoin. This can be explained by its much lower market cap 
and popularity, combined with its different approach to block sizing. Since it is a Turing-complete 
distributed state machine, transaction fees depend highly on the complexity of the app that issues 
the transaction. Moreover, for this reason, a transaction fee consists of two parameters: gas price and 
gas limit, which should be defined by the transaction issuer. This makes the system a little less clear 
for common users and negatively affects their user experience. 

Blockchain 3.0 

Many projects claim to be able to maintain extremely low transaction fees, but these statements 
cannot be verified, since none of these projects have reached a system load close to that of 
Ethereum. What can be said for sure is that, being virtual machines (although not always 
decentralized), they all have the floating commission issue that is intrinsic for platforms of this type. 

 

5) Financial privacy 

Since blockchain is a public ledger, any person can view all of the transactions in the network. 
Hence, if the user discloses his or her ID to a third party, this party will instantly know the user’s 
current balance and entire financial history. This is a serious flaw from the point of view of an 
average consumer who intends to use such a system for everyday payments, which means that the 
system should be capable of hiding transaction attributes and balances from the public. 

 

Blockchain 1.0 

Surprisingly, first-generation projects are the only ones among popular platforms that offer banking 
secrecy compatibility, but this fact has a reasonable logic beyond it – the technical solutions offered 
are applicable only to UTXO based platforms and put an intense load on the system, which is why 
they are less compatible with the decentralized virtual machine concept. The most popular 
platforms that offer a means of hiding transaction attributes are Monero, Dash and Zcash. 

Blockchain 2.0 

Ethereum does not offer any transaction attribute-hiding solutions on the protocol level. Although 
there are projects devoted to bringing financial privacy to Ethereum via smart contracts, any 
significant steps toward this goal on the platform scale will not be introduced any sooner than 
Ethereum 2.0 is presented. 

In any case, since Ethereum uses an account model and focuses on smart contracts, it cannot use 
any currently available privacy solution. 

Blockchain 3.0 

Not many developers of recent projects care about this factor, and, surprisingly, some even state 
that anonymity should be excluded from cryptocurrency operations. We can state that no better 
solutions than the ones used in the first-generation blockchains mentioned have been introduced 
to date. 

 

6) True decentralization 

We already have a working centralized payment infrastructure, and there is no need for another 
similar system that differs only in the presence of the word “blockchain” in the title. Since making 
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the system more centralized is apparently a way of resolving the scalability issue, many developers 
have chosen this path. 

We do not support this approach and believe that decentralization is a crucial feature, which is why 
the system should be designed in a way that prevents any possibility of oligopolistic control and 
censorship attempts or any other possible kinds of coordinated selfish behavior. 

 

Blockchain 1.0 

Bitcoin was the first working concept of a decentralized payment system, and its creator paid a lot 
of attention to the notion of decentralization. The very reason of Nakamoto consensus invention was 
the need to find a fault-tolerant and Sybil-proof solution for setting transaction timestamps without 
involving a trusted intermediary.  

Although the proposed solution seemed appropriate in the early stages, the appearance of mining 
pools dramatically changed the situation, and currently the major fraction of Bitcoin’s hashrate is 
controlled by just a few actors. The oligopolistic trend shows that the PoW concept is far from 
perfect in terms of providing decentralization, not even mentioning other known issues, like 
AsicBoost. 

Blockchain 2.0 

Ethereum has the same issues overall as Bitcoin, since they use very similar consensus protocols. 
Transition to the PoS protocol is scheduled in Ethereum 2.0, but we cannot reasonably evaluate it 
until we see its final version implemented in the mainnet. 

Blockchain 3.0 

Most developers have concentrated on scalability and speed issues, trying to provide as many TPS as 
possible. The easiest way to speed up a decentralized system is to centralize it (thereby reducing its 
security as well), which is the path most projects followed. We can see a clear trend of moving back 
to something that looks more like client-server architecture, while pretending to be a peer system. 

That has led to the creation of pseudo-decentralized systems, where instead of one trusted 
processing party, blocks are formed by a limited group of pre-appointed validators, thus making 
these systems not much less centralized than Visa or MasterCard. 

To date, we can state that the overall situation with decentralization among the majority of recent 
platforms is very sad, despite the fact that the decentralization concept is actually the very reason 
for cryptocurrency technology’s existence. 

 

7) Widely distributed system support 

One of the key factors influencing the level of decentralization is the number of nodes that 
participate in a state transition. The system should be designed to let the maximum number of 
users be involved in the system’s support processes: in other words, we should distribute trust as 
much as possible. 

Distributing rewards among a higher number of recipients also benefits the economy of a 
cryptocurrency, providing more independence (since it prevents the concentration of large 
numbers of issued tokens within a limited group of users) as well as stimulating the growth of a real 
economy.
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Blockchain 1.0 

The essential properties of the protocol seemed to fit the concept described in its early stage, but 
the hashing algorithms used in Bitcoin and its successors allowed the creation of ASICs, which, 
together with a constantly growing level of difficulty, made mining a purely professional activity. 

Although any person could theoretically participate in mining by joining a major mining pool, cost 
optimization requirements have become a serious obstacle for amateurs. 

Blockchain 2.0 

Ethereum uses hashing algorithms that work optimally on GPUs (although the ASIC problem is still 
not completely resolved). This makes it easier to participate in mining with quite standard hardware. 
The problem of cost efficiency is still present, however, as it becomes an essential companion of any 
PoW system once it reaches maturity. The current situation shows that we need a different state 
transition algorithm if we truly want to preserve widely distributed system support and resist 
mining professionalization. 

Blockchain 3.0 

As we mentioned, most developers have concentrated on the speed and scalability of their 
platforms. The easiest way to enhance these parameters is to delegate system support to a highly 
limited number of validators with professional hardware, and this is what many recent projects tend 
to be like. 

 

8) Economic potential 

Existing cryptocurrencies, in their current state, remain mostly a speculative asset and do not 
transform into a medium of exchange for goods and services. Speculative manipulations greatly 
increase their volatility, thus further hindering the development of a real economy. 

Besides implementing all the features mentioned above, which should make the system 
competitive with fiat currencies in terms of their user experience, it is also essential to provide a 
well-designed economic model that can help overcome the speculative phase. 

 

Blockchain 1.0 

Even though it was introduced by its creator as a decentralized payment system (literally “a peer-to-
peer electronic cash system”), Bitcoin did not quite turn out to meet this definition, and became 
instead a speculative asset or an inflation hedging tool. We can conclude that from now on it will 
most likely remain digital gold, merely providing the same functions that precious metals do 
currently in the economy. We see no way for Bitcoin to transform from its current state into an 
actual cash system with the function of a universal medium of exchange. 

Blockchain 2.0 

The situation with Ethereum (ETH) is slightly different. Since Ethereum is used mostly as a platform 
for conducting ICOs, ETH tokens power the market of various tokens issued by third parties. Though 
most of these tokens have the properties of securities, and hence it is still mostly a financial market 
instead of a real economy, it actually serves the main purpose of the platform and provides token 
use apart from just speculative trade. In any case, as Ethereum was never particularly meant to be a 
currency, the current situation is justified by ETH’s initial purpose to be a fuel for Dapps.  
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Blockchain 3.0 

All the same problems can be found in the newer platforms, since nobody has put enough effort 
into improving their economic aspects, concentrating instead mostly on their technical features 
(such as speed and scalability, which does not improve the economy much). This leads to the 
stagnation of most platforms right after their release, but developers usually do not seem to care 
much. 

2. Current state of the industry 

1) Brief summary on features we intend to achieve 

Here is a brief summary of the properties that we find essential for an ultimate decentralized 
currency system: 

a) Decentralization. The system should be resistant to oligopoly control, censorship attempts 
and cartel formation. As well, the functions of system support and rewards for performing 
these functions should be distributed among as much participants as possible (which means 
that the nodes should be capable of being run on common desktop-class hardware and have 
relatively low bandwidth requirements). 

b) Closeness to centralized systems’ user experience. The platform should process all 
transactions (despite any preferences of the block producers). Each transaction should be 
finalized within 10–20 seconds. The platform should handle 10,000 TPS with tolerable 
overhead, process transactions free of charge and provide financial privacy. 

c) Economic potential. The platform should be capable of transitioning from the initial 
investment stage to the development of a real economy. 

Having stated all of the basic requirements for a cryptocurrency that actually intends to become a 
fully-fledged currency in itself (something we may call a “decentralized currency system 2.0”), we 
can finally give a reasonable answer to the question: Are there any existing projects that match at 
least most of the requirements? The answer is no. 

2) Bitcoin as currency 

As we can see, Bitcoin, for example, fully matches none of the stated criteria: 

 No impartial transaction processing is available, and miners are free to reject any transactions 
at their own discretion. 

 It processes transactions very slowly: 60 minutes to a get reliable confirmation. 

 It provides only 7 TPS. 

 It features high commissions, especially during periods of increased load. 

 It does not offer financial privacy. Every user can see all other users’ histories of transactions. 

 It is not decentralized enough, since a limited number of mining pools have obtained a very 
strong influence on the system. 

 System support is concentrated mostly in the hands of professional miners who possess the 
most powerful farms. 

 Its economy got stuck in the speculative stage. 

It seems absolutely clear that, being this far from providing a user experience similar to common 
centralized payment systems, Bitcoin never had any chance in substituting for a conventional fiat-
based payment infrastructure. 
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Although there are plenty of Bitcoin maximalists who are ready to tolerate any flaws of the platform 
and truly believe that it can replace the entire fiat finance framework, their numbers, unfortunately, 
are far from sufficient, and there are not many such people left uninvolved to date. 

Those who prefer a more pragmatic approach may agree that decentralization is a very promising 
paradigm, but, at the same time, they will consider switching to it only after someone offers a 
platform that can provide the level of convenience comparable to conventional centralized systems. 

And finally, the vast majority of people around the world just do not understand or care about the 
notion of decentralization. Their interest can be triggered only by simpler, down-to-earth 
advantages, such as fast and free transactions, fully anonymous payments, the possibility of mining 
some coins without large investments etc. 

That is why Bitcoin’s userbase will not scale up to hundreds of millions of active users. The platform’s 
design just does not have enough to offer a general audience. 

Does it mean that Bitcoin will inevitably fall? We do not think so. As we said, Bitcoin is capable of 
performing the same functions in the economy as gold currently plays. 

Not long ago, gold used to be a medium of exchange and fully performed the functions of money. 
Eventually, more convenient means of payment were invented (banknotes and finally digital money, 
which were untied from gold at a certain point), and gold mostly lost its initial function. As we can 
see, it did not completely remove gold from the economy, but rather transformed its functions into 
that of an inflation-hedging tool. 

Since Bitcoin has certain properties in common with gold and other precious metals (i.e. a limited 
supply with slow, controllable issuance) and its technical drawbacks do not influence its ability to 
perform the stated hedging function, it may find its place next to gold or even eventually replace it, 
as the world is constantly trending to digitalization. 

One may notice that this conclusion does not fit our initial classification. In the beginning of this 
white paper, we stated that Bitcoin should be classified as a decentralized currency system 1.0. 
Indeed, having been called a peer-to-peer electronic cash system by its creator, it was conceived to 
be used as such. We believe, however, that at the current stage we should reconsider the 
classification of blockchain platforms. Our refined vision will be described in the chapter devoted to 
competition. 

3) Other platforms as currencies 

What about Ethereum and other decentralized virtual machines (so-called blockchain 2.0 and 3.0)? 

Although implementing smart contracts on blockchain is a really great idea, it actually does not 
help a cryptocurrency to be a better currency. In reality it does exactly the opposite – it degrades the 
properties of a given blockchain system as a payment processor, since it applies complications that 
do not serve payment functions but rather make the platform a more universal tool. 

As a completely different concept, it should not have been called blockchain 2.0, because it does not 
replace currency platforms. Both concepts can easily co-exist, and each can follow its own path of 
development. 

After the appearance of Ethereum, the concept of Bitcoin-like payment systems was abandoned for 
good, and since that time we actually have not witnessed any serious attempts to bring about a 
next-generation blockchain system concentrated solely on payment functions. 

We see two main reasons for this situation: 

a) Developers do not try to create such a system because the “blockchain 1.0, 2.0 and 3.0” 
classification has been fully entrenched through the media. Developers must follow the rules 
and try to make some kind of a blockchain 3.0 system if they really want to attract sufficient 
funding. Therefore, most projects arrive under the slogan “make Ethereum, but faster.” One 
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must be bold enough to go against this trend and convince the community of the falsity of 
this approach. 

b) It is actually very hard to design a system that can embody all the stated parameters, since 
they conflict with each other. For example, it is commonly known that increasing system 
performance will inevitably reduce decentralization or security. Finding an optimal balance of 
all parameters and developing an architecture that will be a perfect compromise is a very hard 
task that nobody is willing to try to accomplish. 

That is exactly why we are here: to fill this gap and introduce a decentralized payment system of the 
next generation capable of becoming the first mass-market cryptocurrency. 

3. What is wrong with smart contracts? 

Since we call the current classification incorrect, we should explain our point of view on 
decentralized application technology and show why this feature is not very beneficial for a 
blockchain payment platform and why we should avoid merging the two notions and finally 
recognize them as different concepts. 

Actually, we like the concept of a decentralized virtual machine, and Ethereum as the first 
embodiment of this concept. The main issue is that, currently, its potential is highly overestimated. 
Let us explain why. 

1) Smart contracts and their use cases 

If we consider the classic notion of a smart contract, which existed long before the invention of 
blockchain (the first known concept was written about by Nick Szabo in 1995), we can roughly define 
a smart contract as an algorithmically self-enforcing contract. 

When someone concludes a common free-form contract, for example to purchase a good, both 
parties must take actions of their own will to fulfil their obligations. A smart contract, on the other 
hand, can initiate enforcement after the occurrence of certain conditions predefined by the parties 
and automatically fulfill the contract without any human involvement. 

The simplest example of smart contract implementation is a vending machine. When a buyer chose 
an item by pressing the appropriate button, a machine’s firmware initiates a smart contract. It waits 
until the buyer puts enough cash into the bill acceptor and then dispenses the selected item, thus 
automatically fulfilling the seller’s obligations without human involvement. 

It can be easily concluded that smart contracts do not have a very wide scope of application. We see 
two use cases in which smart contracts can be engaged: 

a) They can be applied to goods and services that can be delivered via software algorithms. 

This means any goods and services that can be dispatched automatically (for example, trading 
from fully automated warehouses, automatic car washes, or any type of digital content) or that 
can be controlled via software-driven devices (for example, a car-sharing service with a mobile 
app). 

b) They can be applied to situations when a transfer of the title of ownership is enough to 
consider obligations fulfilled. 

The most common example is non-certificated securities – since they do not exist in material 
form, their transfer is conducted simply by making a record in the database. 

2) Decentralized smart contracts and their limitations 

Though we see that there are a limited number of smart contracts use cases, this technology looks 
promising, especially considering the current trend of digitizing business processes. 
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When we put smart contracts into a decentralized environment, however, the situation changes 
dramatically. The problem is that the rules of decentralized systems further limit the already limited 
smart contracts’ capabilities. 

a) Decentralized smart contracts are completely independent. 

While centralized smart contracts can play an ancillary role in traditional legal agreements and 
execute certain predefined parts of parties’ obligations, a smart contract put into a 
decentralized environment cannot refer to any off-chain agreements, and all rules for 
interactions between the parties should be coded within a smart contract (or a set of smart 
contracts within one blockchain). 

While centralized smart contracts can interact with different sources, decentralized smart 
contracts can interact only with other smart contracts within a given decentralized 
environment and cannot process data from any off-chain sources, since contract instances are 
replicated on multiple nodes and, in the case of operating with non-deterministic functions 
upon receiving non-identical data, the consensus may be broken. This issue may be solved by 
trusted oracles, but introducing a trusted intermediary into a system that was designed 
particularly to avoid trusted intermediaries contravenes the initial idea behind 
decentralization. 

b) Decentralized smart contracts are outside the legal field. 

In most countries, digital agreements are recognized as legitimate (although an expert 
opinion is often required to assess the content of the contract and the circumstances of the 
dispute), so when enforcement algorithms of a smart contract fail or a dispute between the 
parties occurs, standard legal procedures can be initiated (for example, filing a lawsuit). 

The legal status of decentralized smart contracts is highly questionable. Although, technically, 
we can apply the same regulations to them as to centralized contracts, it is still unclear how 
any external source would be capable of influencing the execution of a decentralized smart 
contract, since one of the main ideas behind decentralized systems is to resist any attempts at 
censorship. 

This means that standard legal procedures are not applicable in this case. Considering that 
one of the distinguishing features of law is that it is backed by the coercive power of the state, 
smart contracts are placed out of the jurisdiction of law enforcement. That is why 
decentralized systems are considered to exist within the unique “code is law” paradigm, and 
that is why we cannot actually apply the terms “law” and “legal” to any rules contained within a 
decentralized environment. 

One may disagree and state that we already have a few platforms with governance, but the 
problem is that governance models may violate basic cryptocommunity principles and make 
these systems centralized. For example, we cannot call EOS a cryptocurrency, for reasons 
including its governance model and other features of the platform’s architecture that rely 
heavily on centralized maintenance. 

c) Decentralized smart contracts are immutable and irreversible. 

One of the distinguishing features of blockchains is impossibility to make changes to the 
database history. Hence, once a smart contract is added to a blockchain, it cannot be stopped, 
altered or terminated (unless particular conditions are specified in the code), and any actions 
performed by it are irreversible (again, we cannot refer to platforms like EOS, which actually 
allow the reversal of an already-confirmed transaction, because such a feature just shows that 
the system is not decentralized and that we cannot call it a proper blockchain system). 

So, if a developer has not foreseen certain problematic situations while writing a smart 
contract, mistakes cannot be corrected afterward, and if there is a bug in the code, the 
consequences can be even more terrible. As we all remember, The DAO contract bug 
aftermath could only be resolved by a hard fork. 
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Taking into account all these issues, we can conclude that, though we can propose many potential 
use cases for decentralized smart contracts, when it comes to actual implementation we will likely 
face so many obstacles that such smart contracts may turn out to be absolutely unusable in many 
real-life scenarios. 

Let us consider one example to which people often refer when intending to demonstrate the 
potential of decentralized smart-contract technology – a land registry. It is stated that we can move 
a land registry (or any other title-registry system) to a blockchain via a smart contract and perform 
all kinds of deals with registered property directly on-chain. It sounds very promising, but the truth is 
that we cannot actually do this. 

One reason is that land is an object of both private and public interests. Such circumstances as 
target usage, intensity of maintenance and land productivity are monitored by authorities, and 
administrative measures can be applied in case of the detection of violations. These measures can 
be applied, including in the form of deprivation of the right of ownership, which necessitates 
making a record in the land registry. In the case of registry keeping within a blockchain, it leads to 
one of two unacceptable situations: either we provide a third party (e.g. specially appointed arbiters, 
judges, government agencies etc.) with the opportunity to make records in the registry against the 
will of title holders, hence violating the decentralization principles, or we lose the opportunity to 
protect public interests. 

What if we take other types of property that do not involve public interest? This will not solve the 
problem even for a bit. There are myriad situations concerning property deals that we cannot script 
in a smart contract. All regulations concerning the invalidity of contracts, inheritance, bankruptcy 
procedure etc. become inapplicable. This means that, by moving any kind of title registry to a 
decentralized blockchain, we are not only changing the underlying technology but also disrupting 
the entire legal framework of property relations. 

Another problem is privacy – blockchain is a public ledger, which means that any person can access 
all the data stored on the blockchain, including the personal data of the property owners. We can 
store data in an encrypted form, but then it raises the questions of key storage and data access. 

Eventually, we will conclude that we are going to need a private blockchain administrated by a 
single authority to satisfy all the required conditions, and this means that we simply do not need 
blockchain for this, as none of the key features of blockchain can be properly used. 

Frankly speaking, these problems are also relevant to common blockchain payment systems like 
Bitcoin – an inability to impose a penalty on the funds seriously affects legal relations as well, and 
privacy is also a relevant problem, but we may state that in this case the cons are balanced by the 
pros, while the case of smart contracts brings too many cons. 

3) Requirements for unlocking smart contracts’ potential 

If we want to build a balanced, decentralized smart-contract platform that could be applicable to 
various real-life scenarios and thus capable of taking full advantage of smart contracts’ potential, we 
should meet the following conditions: 

a) We need to codify the law for a decentralized environment. 

And by “codifying,” we mean literally to codify – to transition common legal norms into 
software code. Since no conventional legal system is fully applicable to a decentralized 
environment, we will have to alter many laws and even basic principles of law, thus creating an 
absolutely new and unique legal framework. 

This is a tremendous task, considering that traditional legal systems have been developing for 
millennia. Even after we manage it, the new system will suffer from an infinite number of flaws 
and gaps that will keep it unusable for decades until most of them are revealed and 
eliminated. 
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b) We need to appoint an arbiter to resolve disputes. 

Of course, having developed a codified legal system, we can resolve certain generic situations 
without an arbiter with the help of the scripted rules, but there are too many variables to 
predict every possible situation. Considering that any gaps will be heavily abused, we cannot 
rely solely on scripts. 

Due to the nature of decentralized systems, we cannot appoint a human arbiter, so the 
optimal solution is to involve an AI. Therefore, we need to develop an AI with technical features 
that correspond with the principles of cryptocommunity and make it capable of 
understanding our coded laws and the facts of the dispute, then solving the dispute correctly. 
Hence, we have another incredibly difficult task. 

c) We need to adopt an off-chain system capable of establishing legal facts in a form 
understandable by AI. 

Any legal dispute settlement consists of resolving two components: a Question of Fact and a 
Question of Law. Even if the latter can be resolved by a combination of a scripted blockchain 
legal system and an AI, a Question of Fact will not always be resolvable with on-chain data 
alone. Many situations will require human involvement. Therefore, we need to adopt a specific 
legal framework and a technical protocol to allow human–AI interaction on the matter. 

This brings us back to the problem of trusted oracles, and this issue may likely become the 
bottleneck of our system’s decentralization. 

To date, there are several concepts of decentralized oracles based on games with focal points, 
in which participants reach consensus by voting for every value fed. Although generally 
efficient, such solutions may fail at a certain point, when the disputed value grows high 
enough to make corrupting attack vectors eligible. In addition, they are only efficient when the 
value is publicly known, but they cannot provide a robust solution to situations in which the 
value can be generated arbitrarily by a single source or a limited number of sources. 

Overall, it seems clear that it will take not years but decades before we will be able to take full 
advantage of the potential of decentralized smart contracts. So far it looks like a promising 
technology, but not one that can be fully used right now. 

If we look at the current situation, this statement is mostly confirmed by experience. Ethereum has 
been out for enough time to evaluate it, including how its smart contract potential was used by the 
developers. 

We have seen three major methods of using the Ethereum platform: 

 ICOs 

 DeFi 

 CryptoKitties. 

Despite the widely discussed potential of smart contracts, we have still not seen many real-life cases 
in which the smart contract technology provided any significant breakthroughs (except maybe 
gambling). We can roughly describe Ethereum in its current state as a platform powering securities 
exchange and crowdfunding. 

4) Cost of smart contract implementation 

Now that we actually understand what the implementation of smart contract technology can bring 
to a blockchain platform, let us evaluate what price we would have to pay for it. 

In the beginning of this chapter, we identified the set of properties we want to achieve in creating a 
next-generation cryptocurrency platform. The problem is that implementing smart contracts will 
impede some of the system’s stated properties:  

https://twitter.com/kerooke/status/1094440820319563776


18 

 

 

a) Free transactions. 

Since user-generated transactions in a blockchain payment system are simple token transfers 
from one address to another, it is easy to evaluate how much traffic and computing power will 
be consumed by each transaction. Therefore, we can apply uniform rules to all transactions. 

If we add smart contracts, the situation changes dramatically. Every smart contract is a 
separate application, which should be processed by nodes in order to complete a transaction 
based on the smart contract. Since smart contracts have different levels of complexity, the 
loads put on the system while the transaction is processed will also differ. Some smart 
contracts (e.g. those containing endless cycles) will be able to overload the system easily, so it 
is necessary to charge fees every time a smart contract is processed. 

Therefore, smart contracts eliminate the concept of free transactions, one of the parameters 
we identified as intending to achieve. It is possible to make separate rules for common 
transactions and those issued by smart contracts, but this may create turmoil for most users 
who will not be able to distinguish among the different types of transactions. 

b) Distributed block production. 

One of our key goals is to decentralize the platform to the maximum degree possible. To 
achieve this, we must design the system in such a way that, even under a very intense load, full 
nodes (capable of block production) could be run on a common laptop or desktop PC 
available to the average user. At the same time, the traffic overhead should not exceed the 
bandwidth available to the vast number of users. 

We may be able to meet these restrictions, but only when we know how much load each 
transaction will generate. In the case of smart contracts, the system load becomes rather 
unpredictable, and we risk exceeding the required parameters, which will lead to nodes’ 
complete migration to data centers as the system scales up. This is a highly undesirable 
scenario and another serious reason to reject the idea of smart-contract implementation. 

c) Reliability of the system. 

Implementing virtual machine technology dramatically increases the number of possible 
vulnerabilities and bugs. Every existing smart contract platform has had to come (or has yet to 
come) a long and painful way to reach relative stability and security. Even Ethereum, which 
was introduced five years ago, still encounters various security issues. 

If we presume that we are going to develop a potentially popular and widespread currency 
with a high circulating volume, then it is crucial to make the system as reliable as possible. 
Implementation of a technology as complicated as smart contracts would definitely not help 
us reach this goal, especially taking into consideration our intention to comply with financial 
privacy standards, which imply balance encryption and hence obstruct the detection of 
violations. 

d) Real-economy orientation. 

Native tokens of smart-contract platforms perform specific functions, serving in the first place 
as fees for the computations performed by block producers. Considering their embedded 
value, they can also serve as a medium of exchange or value storage, but performing these 
functions is not their primary purpose. 

Meanwhile, creating a platform with tokens that are primarily meant to be used as a universal 
medium of exchange requires a specific approach to economy, which will not be optimal for a 
smart-contract platform. 

If we admit that government bonds, for example, can be used instead of a currency for 
settlements between certain major players on the market, this does not mean that they can 
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replace cash on the consumer level. In the same way, tokens that serve as a fuel for Dapps 
cannot replace currency tokens, as they cannot bear the optimal economic properties. 

Considering all the provided analysis and keeping in mind our primary goal (to create a payment 
system with native tokens that can be used as a universal medium of exchange), we can conclude 
that building a decentralized virtual machine does not coincide with our vision, which is why we 
believe that we should leave this feature to Ethereum and concentrate on features that really 
matter: free transactions, true decentralization, reliability and an optimized economic model.  

This is also why we should stop calling smart-contract platforms blockchain 2.0 and blockchain 3.0. 
We clearly see that they are a totally different concept of blockchain technology use, but not an 
upgraded version of decentralized payment systems. 

We should note that smart contracts we are talking about do not completely fit the definition of 
Ethereum’s smart contracts. Since the Ethereum platform uses Turing-complete languages, any 
kind of app can be coded on the Ethereum blockchain, including, but not limited to, smart 
contracts. For example, nothing can stop someone from creating a Super Mario game on the 
Ethereum platform. It will be a super-slow, super-expensive Super Mario, but it is still possible. 
From the point of view of Ethereum terminology, such an app would be still powered by a smart 
contract, even though we see that it has nothing to do with the notion of smart contracts we 
described earlier. Ethereum developers did not use the term very aptly, thus creating a bit of 
confusion. 

Regardless, considering that Ehereum Virtual Machine’s computations are extremely slow and 
expensive, we may conclude that it is suitable mostly for scripts that involve value transfers, 
hence smart contracts or at least parts of them. Even games built on the platform usually operate 
with tokens that have some material value. This means that our definition of smart contracts, 
though not strictly matching Ethereum’s terminology, may be practically applied to the subject 
at hand. 

4. Overcoming the crypto community’s entry threshold 

After we create a system that is perfectly capable of being a consumer-level payment platform, we 
will face another problem: how to spread such a system among a wider audience. 

As already mentioned, the crypto community today is a rather closed system of professionals and 
enthusiasts that grows at a moderate rate. One of the main obstacles to the rapid growth of the 
number of people involved in the crypto community, in our opinion, is a high entry threshold caused 
by the following factors: 

a) The complexity of use 

Very specific knowledge is required to use the existing tools. Not all IT professionals, to say 
nothing of inexperienced users, understand the mechanisms of cryptocurrencies 
(cryptowallets, public and private keys, light and full clients, smart contracts etc). Ordinary 
users lack access to a simple and understandable product that would allow for the use of 
cryptocurrency in two clicks. 

b) The need to invest fiat funds 

To obtain crypto coins, an ordinary person first needs to understand how the exchange service 
works and second needs to spend a certain amount of fiat money. One may try to obtain 
cryptocurrency by mining, but nowadays mining has turned into a professional activity that is 
absolutely impractical without special knowledge, experience and significant investment. 

Considering that cryptocurrencies face strong prejudice created by media among the general 
audience, the risk of losing money mostly prevails over the audience’s curiosity. 
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c) The lack of real use scenarios 

Cryptocurrencies are mostly used as an investment tool, and the real economy within the 
cryptocurrency environment is just beginning to develop. The volatility of the exchange rate 
does not help the development of the real economy either, but this does not seem to bother 
many developers, who are well enriched from bubbles in the stock market. As for the users 
who are not interested in investing their savings, most cryptocurrencies cannot offer them any 
relevant methods of use. 

As a result of these obstacles, many people unrelated to the IT industry refrain from using 
cryptocurrencies, despite the fact that they may have an interest in them. In fact, the money 
decentralization concept introduced by Bitcoin is beneficial for the general audience and not 
only for geeks, but there is too much confusion caused by presenting Bitcoin as a bubble and 
a financial scam by media. Combined with the other mentioned threshold factors, this heavily 
reduces the potential for cryptocurrencies to proliferate. 

Having assessed all of these factors, we came to the conclusion that if we really intend to introduce 
a cryptocurrency as a payment instrument for the consumer market, we must present not a mere 
blockchain protocol but a complete product on top of the protocol with the possibility of integration 
into a convenient ecosystem. If we simply create a technical platform, we will face the same entry 
threshold that the users of other cryptocurrencies are forced to overcome. In this regard, for the 
cryptocurrency to accomplish this task, a basic platform app should be created that will be capable 
of becoming a popular product itself, gaining interest among users regardless of the presence of an 
integrated cryptocurrency. 

A social network could be the ideal environment for the spread of a cryptocurrency. Social networks, 
however, have one property that is incompatible with the basic principles of cryptocurrencies: the 
need to share the user’s identity directly or upload data that allow for the indirect identification. An 
anonymous social network is simply an oxymoron; however, an anonymous messenger is a pretty 
viable concept. 

5. P2P messenger as a basic application for the 
distribution of cryptocurrency 

Today, the most popular applications of this type are centralized messengers, which use servers to 
process most of the user’s data (WhatsApp, WeChat, Viber etc.). 

After the revelations of Edward Snowden, the problem of insufficient user privacy has begun to be 
actively discussed. To provide a solution to this problem, the developers of messengers have 
implemented end2end encryption. 

This solves the issue of data privacy only partially, however. The main problem of popular 
messengers lies in their centralized architecture. No matter what encryption they use, there is 
always a person managing the servers. By applying pressure on this person, one could obtain 
control of the servers and therefore the user data stored there. 

One may ask, if developers apply end2end encryption, what kind of data we are talking about, 
exactly? We see several problems concerning privacy in modern popular centralized messengers: 

a) End2end encryption does not necessarily prevent third parties from reading encrypted 
conversations. 

Firstly, in most cases we cannot be sure that developers do not have an opportunity to obtain 
private keys. Most messengers’ source code is not publicly available, and those who claim to 
be fully open source and free might turn out not to be so open and free (for example, the 
available Telegram client source code is usually outdated, and no server-side code was ever 
published). Considering that client apps transfer a lot of metadata to servers, nothing stops 
developers from secretly obtaining private keys. 
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Secondly, even if all the transferred data is securely encrypted and no keys are sent to the 
developers, it is still possible to remotely read the whole chat history stored on the device. 
There are multiple reports from users who claim to be getting targeted ads on Facebook 
regarding keywords that they typed only in WhatsApp chats. Users are wondering how 
Facebook can know about the contents of their WhatsApp correspondence if it is totally 
encrypted. 

It is actually technically possible via data sharing between apps. For example, in earlier iOS 
versions, each app had its own totally separated sandbox and no data sharing between apps 
was allowed. iOS 8 introduced a “shared container,” which allowed particular data to be shared 
between apps in the same app group. The iMazing app developers recently discovered that 
the WhatsApp, Facebook Messenger and Facebook apps actually share the same container, 
called group.com.facebook.family. This, together with the mentioned user reports, may lead to 
certain conclusions. Since WhatsApp is proprietary software, we cannot examine the code and 
find out whether these conclusions are true. What can be concluded for sure is that there is a 
technical possibility of Facebook developers collecting, storing and using any WhatsApp user 
data, including messages. 

b) End2end encryption is not necessarily applied to all user interactions. 

For example, in the Telegram messenger, end2end encryption is applied only to specially 
created secret chats, while other interactions stay unencrypted (only client-server encryption 
is applied), and the Windows version does not have a secret chat feature at all. Most users 
simply do not investigate these peculiarities and use the app in the default mode. Since all 
user data, including transferred messages, is stored permanently on servers, nothing prevents 
developers from using it at their discretion. 

Other messengers persistently suggest creating a backup of all data, which is then stored in 
the cloud in an unencrypted form. 

c) Even with end2end encryption, a lot of metadata still can be stored on servers. 

Analysis of this data can provide a lot of information about users: much more, in fact, than 
meets the eye. There is an interesting article on the subject by Kurt Opsahl in which he 
provides some examples of why metadata is really something that we should take seriously: 

«They know you rang a phone sex service at 2:24 am and spoke for 18 minutes. But they don't 
know what you talked about.» 

«They know you called the suicide prevention hotline from the Golden Gate Bridge. But the 
topic of the call remains a secret.» 

«They know you spoke with an HIV testing service, then your doctor, then your health 
insurance company in the same hour. But they don't know what was discussed.» 

«They know you received a call from the local NRA office while it was having a campaign 
against gun legislation, and then called your senators and congressional representatives 
immediately after. But the content of those calls remains safe from government intrusion.» 

«They know you called a gynecologist, spoke for a half hour, and then called the local 
Planned Parenthood's number later that day. But nobody knows what you spoke about»... 

The problem of metadata collection and analysis is also recognized on the highest levels. Here 
is an extract from the report of the UN High Commissioner for Human Rights (A/HRC/27/37): 

«The aggregation of information commonly referred to as “metadata” may give an insight 
into an individual’s behavior, social relationships, private preferences and identity that go 
beyond even that conveyed by accessing the content of a private communication. As the 
European Union Court of Justice recently observed, communications metadata “taken as a 
whole may allow very precise conclusions to be drawn concerning the private lives of the 

https://developer.apple.com/documentation/foundation/filemanager/1412643-containerurl
https://medium.com/@gzanon/no-end-to-end-encryption-does-not-prevent-facebook-from-accessing-whatsapp-chats-d7c6508731b2
https://www.eff.org/deeplinks/2013/06/why-metadata-matters
https://www.ohchr.org/EN/HRBodies/HRC/RegularSessions/Session27/Documents/A.HRC.27.37_en.pdf
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persons whose data has been retained.” Recognition of this evolution has prompted 
initiatives to reform existing policies and practices to ensure stronger protection of privacy.» 

The first two issues can be solved by making an actually fully free and open source software. Some 
developers are already following this path (for example, the Signal messenger), so even though the 
most popular solutions on the market do not fit this requirement, we cannot say that these issues 
are completely unresolved. 

The metadata issue, however, is a problem inherent in any centralized solution. The only way to 
solve it is to use peer-to-peer architecture. 

Complete P2P design offers several benefits to a messaging service: 

 Client and server functions are merged in one app, making it easier to audit the code and 
ensure that there are no backdoors. 

 Users do not have to trust any particular party, since the whole system is run by users 
themselves. 

 The developers have no extended access to system operations or user data; therefore, there is 
no sense in applying pressure on the developers by any parties who wish to influence the 
system or obtain user data. 

 Using an appropriate system of relays, it is possible to hide user interactions, making the app 
relatively anonymous and secure. 

This means that if we want to take the next major step in instant messaging evolution, we should 
develop a decentralized messenger working via a peer-to-peer protocol with an open source code. 

To date, there is no truly fast, stable and convenient P2P messenger. All products are currently in a 
very rudimentary state and have unclear prospects, since there are some issues that are very hard to 
solve: 

a) There are numerous popular solutions available and the market has long been formed. 

If we come up with just another messenger, how do we motivate people to download it if it is 
not used by a large number of their friends? It is quite hard to promote a new product in such 
a crowded market even though we can offer several major improvements. To obtain a large 
userbase, we need both to conduct a serious marketing campaign and to introduce some 
killer features capable of attracting the attention of a major audience. 

By merging a messenger with a cryptocurrency, we can introduce several new stunning 
features which were not available to developers earlier, thus greatly improving its marketing 
potential. 

For a more detailed description of our marketing strategy and Liberdyne’s killer features, 
please refer to the Marketing chapter. 

b) People are not willing to share their resources for free. 

During a system’s infancy stage, P2P messengers do not consume any noticeable amount of 
resources, so most users simply pay no attention to this matter. With the growth of the 
userbase and the increasing percentage of mobile clients, however, full nodes will begin to 
consume more resources, and at some point users who are not willing to constantly share 
their bandwidth for free will start shutting down their full nodes, which in turn will shift the 
load to the remaining users, thereby increasing their overhead. This will lead to a chain 
reaction that creates the risk of bringing the system back to something resembling client-
server architecture, where developers’ servers will be the only full nodes left. 

To overcome this stage, we need to offer users incentives to keep running full nodes, and that 
is when a cryptocurrency comes into play. Since we are merging two technologies in one 
product, a full node of the messenger is at the same time a full node of the blockchain. This 
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allows rewards to be issued for supporting both components of the system, thus completely 
solving the problem of user motivation. 

These statements already show why distributing a cryptocurrency via a messaging platform is such 
a great idea, but we have only mentioned several ways that blockchain can benefit a messenger, 
while it actually works both ways – a messenger can also provide a cryptocurrency with some great 
opportunities that were not available before. Such features will be covered further in this white 
paper. 

It is worth mentioning that a number of developers (some of whom will be discussed in the section 
on competitors) have already tried to develop a messenger based on a cryptocurrency platform, but 
to date, in our opinion, no one has been able to present a complete, high-quality product. One of the 
main problems of the unsuccessful attempts is that messengers are built on the basis of already-
working blockchain platforms, which are not optimized for such applications. To create an adequate 
product, both components must be developed in coordination. 

III. PoW vs PoS 

1. Brief description of the problem 

Bitcoin was not technically the first digital currency, but it was the first project to solve one last 
major problem on the way to building a decentralized payment system – determining the order of 
transactions without the involvement of a trusted intermediary. 

In centralized systems, such an order is determined by an appointed party, who simply places the 
timestamp the moment it receives a transaction. In peer systems, transactions may come to 
different peers in a different order, so there is a need to come to an agreement (consensus) via some 
kind of a voting mechanism. 

The simplest implementation of such a voting mechanism is the one-entity-one-vote principle, but 
unfortunately, in anonymous and pseudonymous permissionless systems, one entity may create 
multiple representations and perform a Sybil attack. Therefore, a Sybil-proof peer consensus 
solution had to be developed. 

The Nakamoto consensus, introduced in the Bitcoin white paper, relied on executing a certain 
amount of work as proof of any given party’s right to add a block of transactions to the database. All 
other system participants should accept a block only with attached proof of execution of the 
determined amount of work. One of the key features of the proposed approach is the impossibility 
to falsify such proofs. If someone tries to alter the transaction history, he or she will have to redo all 
the work from the genesis block (or any other desired branching point) to the current block of the 
system. 

The proof-of-stake algorithm introduced later uses a similar concept, but instead of executing work, 
the right to produce a block is based on the number of tokens in one’s possession. The fundamental 
difference of this proposed solution is that proofs are based on an intrinsic resource, whereas PoW 
relies on an external resource. 

Despite the fact that PoS allowed developers to build faster systems and greatly reduced the 
amount of consumed resources, it is not considered the perfect substitution for PoW due to several 
problems arising from the mentioned difference. 

The main issue is PoS systems’ vulnerability to so-called long-range attacks, to which PoW is 
considered resistant. We will not describe these problems in detail, since a great deal of information 
on the subject can be found over the web. We can only state that, to date, PoW systems (such as 
Bitcoin) are still considered safer, and PoS systems’ reliability is put to doubt. 
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We do not share this opinion, and we will show that PoW protocols are not significantly more secure 
than PoS and that, considering all the benefits we can get from moving to PoS, we should finally 
leave PoW systems behind. 

2. Objectivity or subjectivity? 

The Nakamoto consensus protocol and other PoW-based protocols are considered objective 
because any newcomer may establish the valid current state of the blockchain knowing only the 
protocol rules and given the fact that at least one node has provided the correct chain. 

Since PoS is vulnerable to the rewriting of history, a new node may not be able to distinguish the 
number of resources contained in the adversary’s altered version of the blockchain from the 
number of resources in the main chain, because they can both formally satisfy the protocol rules 
and have the same weight in the system from the point of view of an external observer. Unlike 
computations, stakes can be replicated on any arbitrary forks at a near-zero cost. That is why, in the 
case of PoS protocols, we have to trust the source (or multiple sources) that provides us with the 
current state of the blockchain, and that is why PoS protocols are referred to as subjective. 

PoWs’ objectivity, on the other hand, is based on the lack of need to trust any third parties to verify 
proofs and establish which chain contains more computations and therefore is the right one. The 
problem is that, while as an abstract model it really works this way, when it comes to real-life 
implementation, it instantly becomes much less objective than it seems to be. 

In Bitcoin protocol, the amount of work produced over a block is proven by the hash of the block, 
which should be below a given target. To verify the validity of the blockchain, a node must calculate 
a SHA-256 hash for each block. 

One can try to accomplish this task with a pencil and paper. According to the research, the rate may 
reach 0.67 blocks per day, which means it would take only about 2,300 people constantly calculating 
hashes for a year to verify the Bitcoin blockchain as of the beginning of 2019. Another option is to 
take a more pragmatic approach and use software to accomplish the task in a few minutes, but that 
is the point where objectivity starts to fade away, because this means that we have to trust the 
developers of this software. 

The problem is that, in practice, blockchain not only operates on the protocol layer but also involves 
the client layer, the OS layer etc. The objectivity of the protocol cannot be transferred to these layers; 
thus, overall objectivity is in practice unattainable. 

If we try to evaluate whether there is any difference in the amount of trust involved in downloading 
software from a third party and downloading a blockchain state from a third party, we may 
conclude that there is none, actually. 

The overwhelming majority of new Bitcoin users start using the system by downloading a client 
from a well-known developer (e.g. Bitcoin Core). Any client can be easily compromised to recognize 
faulty hashes as valid ones, thus allowing the developer to make all nodes that use the given client 
switch to the developers’ corrupted blockchain from the valid one any time he or she wishes (or just 
steal users’ private keys, if the malicious developer prefers a simpler approach). The only way to 
make sure the client is secure and the verified blockchain objectively contains the stated amount of 
work is to conduct a full audit of the source code (including every update) or code one’s own client, 
which is done in close to zero cases. 

When a new user joins a PoS system, he does exactly the same, except that PoS software will not be 
always capable of distinguishing the correct system state reliably if different versions of the 
blockchain are provided by nodes. This is why the current state is usually provided by the software 
client developer along with the genesis block (or a set of trusted nodes is predefined in the 
preferences for this purpose). It involves about the same amount of trust as in the PoW’s case. 

This means that the PoW’s objectivity is mostly an abstract model, which can be used for academic 
purposes but cannot be properly used in real-life scenarios. 

http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.html
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If we take a fully paranoid approach, we may come to the conclusion that, to verify the objective 
proofs of work contained in a newly downloaded Bitcoin blockchain, we have to trust: 

 The person who developed the Bitcoin software client, because he could have compromised it; 

 The administrator of the resource from which we downloaded the client, because he could 
have replaced the legitimate client with a compromised one (this issue can be solved with a 
cryptographic signature, but then we would have to trust the certification authority); 

 The operating system developer, because he could have compromised the OS; 

 The device vendor, because he could have preinstalled compromised software; and 

 The hardware manufacturers, because they could have flashed compromised firmware. 

It seems that to take full advantage of PoW’s objectivity and verify the proofs contained in a newly 
downloaded Bitcoin blockchain without actually having to trust third parties, we would have to 
build our own device, starting from the CPU and all other components, and code our own firmware, 
operating system and Bitcoin client. In addition, we should code everything in a low-level language, 
because any higher-level programming language translator could have been compromised as well. 

For this reason, we consider Bitcoin’s objectivity to be nothing more than a spherical cow in a 
vacuum – an abstract model with no relationship to the practical environment. 

3. PoW’s practical security level 

Besides the problem of subjectivity, PoS algorithms are also sometimes considered less secure from 
the point of view of the amount of resources needed for a successful double-spend attack. 

In reality, the level of security highly depends on the issuance rate, for it defines the size of the 
reward for block creation, and besides, the security model of PoW blockchains scales poorly. 

It is well known that to successfully attack a PoW system one will need >50% of the total mining 
power. Although there can be certain conditions that will allow one to succeed with many fewer 
resources, such a scenario is rather complicated and not guaranteed to be successful, as most major 
mining pools may refuse to mine on top of an adversary’s chain, even in the case that the adversary 
succeeds in building a longer chain for the required time period. 

Indeed, 50% of the current Bitcoin hashrate, which is measured in exahashes, seems an enormous 
number. This leads PoW proponents to the conclusion that Bitcoin’s architecture still seems to be 
the most robust. 

To verify this statement and see whether it is actually so difficult to execute a double-spend attack 
on Bitcoin, we should evaluate the actual system’s attack resistance in as close to a real-life attack 
scenario as possible. 

A 51% attack can be carried out in different ways: 

a) Controlling the required computing power. 

This is a more likely scenario, and for this reason it is the main point of our interest. 

Assume that 𝑛 is the total system token supply and 𝑥 is the number of recourses needed to 
perform a successful attack, measured in tokens at their current market exchange rate. Then 
𝑥 ÷ 𝑛 = 𝑘, where 𝑘 is the coefficient of the system’s practical attack resilience. 

Since Bitcoin’s attack resistance is based on an external resource, the coefficient will not be 
static and will constantly change over time, depending on multiple conditions (i.e. the BTC 
market value and the hashrate of the system). Due to the preset issuance rate, which defines 
the relevant yield of mining, however, the coefficient should hold at an approximately same 
scale and reduce after each halving. 
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Let us pick some remarkable date to count the coefficient. The moment of Bitcoin’s peaking in 
value on Dec 17, 2017 looks an appropriate option, for Bitcoin’s market rate exceeded $20,000 
that day, and we can presume that it may have been one of the most opportune moments to 
execute an attack to date. 

On Dec 17, 2017, the hashrate of Bitcoin reached about 14,630,524 TH/s, which means that 
possessing about 

14,630,524 ÷ 2 = 7,315,263 TH/s 

would have allowed one to execute a successful attack. One of the most popular and efficient 
ASICs for Bitcoin mining at that time was Antminer S9, which produced about 14 TH/s at a cost 
of $2000 in retail. So, to execute a successful attack we would have needed 

7,315,263 ÷ 14 = 522,519 Antminers 

which could have cost us 

522,519 × 2000 = 1,045,038,000 USD 

Considering that we know the Bitcoin total market cap as of that day, we can finally calculate 
the Bitcoin attack resilience coefficient: 

1,045,038,000 ÷ 336,433,998,575 = 0.003 

This means that we needed to invest only 0.3% of the total Bitcoin circulating supply to 
perform a successful attack, and it does not seem to be as secure as PoW supporters state.  

Furthermore, with the growth of the market cap, we are going to need more and more 
hardware to hold the coefficient, which is why the model scales poorly. If we assume that 
Bitcoin became the world currency and its real value grew to the extent of USD (which is 
roughly about $20 trillion), then to maintain the same coefficient we need to engage about 
$600 billion worth ASICs, which will presumably consume petawatt-hours of energy. 

b) Bribing miners for a temporary attack. 

Instead of controlling the required hashrate directly, the adversary could bribe major miners or 
mining pools to secretly mine the adversary’s chain for a required period of time. Instead of the 
security coefficient derived in the previous clause, we should consider the price of the attack 
per time. 

We suppose this vector of attack in practice improbable to occur in the main fork for social 
and economic reasons. If we assume that major miners could coordinate their actions to 
commit an attack, they would prefer to gain direct profit instead of acting in favor of the 
adversary. Moreover, if miners committed such an attack, it would undermine the credibility of 
the entire system and cost miners severe potential losses from the subsequent market value 
drop. Under such circumstances, the adversary would need to offer a very large reward, which 
could exceed his or her potential gains. 

Given the results above, we can conclude that the alleged PoW’s advantages do not in practice 
provide a significant advantage over PoS. The problems of subjectivity and insufficient security are 
exaggerated, and there are no reasonable obstacles to a full transition to PoS algorithms. 

Implementing a set of specific features can help build a PoS algorithm with a practical security level 
that is at least not inferior to classic PoW implementations or that even surpasses them, as will be 
shown later in this white paper. Besides, PoS systems, featuring an endogenous security model 
contrary to exogenous PoW security, scale much better and have no problems with any potential 
growth in value. 
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IV. Dynemix Cryptocurrency Platform 

1. Brief overview 

Dynemix is a decentralized, permissionless, account-based blockchain system powered by a unique 
Proof-of-Stake BFT consensus protocol. 

Dynemix is designed to achieve one goal – to become the first widely adopted decentralized means 
of payment (commonly called a cryptocurrency) and compete with conventional centralized 
payment infrastructure on equal footing. 

Dynemix operates in a symbiotic relationship with the Liberdyne messenger, which allows it to 
introduce features not previously available and to progress toward the stated aim. 

To achieve the declared goal, Dynemix is endowed with the following features: 

a) Transactions are free. 

Unlike other blockchain systems, which feature market-determined fees for all transactions, 
common transactions in Dynemix are free. Fees are charged only for business-related 
transactions that require multi-outputs. 

b) All transactions are finalized within 6 to 16 seconds after being sent to the system. 

Unlike other blockchain systems, which allow transactions to be added to the block at the 
discretion of the block producer, every transaction broadcast into the Dynemix network is 
added to the next block, which is instantly finalized. There is no need to wait for additional 
confirmations. 

c) Dynemix scales to 10,000 TPS and higher. 

Our sharding solution allows Dynemix to scale up as much as needed. The system can scale to 
10,000 TPS and beyond with moderate hardware and bandwidth requirements. 

d) Dynemix is highly decentralized. 

Unlike many recent blockchain projects, which solve the scalability issue by adopting highly 
centralized architecture, Dynemix is designed specifically to provide the highest level of 
decentralization, which surpasses even the level of classic PoW blockchains, such as Bitcoin. 

e) Dynemix is highly secure. 

With the help of a two-layer security model, Dynemix manages to increase scalability without 
the need to sacrifice security. 

f) Dynemix can be minted on a common PC at home. 

Due to its excellent optimization, the use of sharding technology and the new consensus 
protocol, it is possible to run a full node on common home-class hardware. No professional 
hardware is required. 

g) Dynemix introduces a new economic model. 

The system features a unique coin issue and reward distribution system that provides a 
solution to the problem of economic development. 

h) Dynemix is compatible with financial privacy. 

Dynemix is designed to use a new cryptographic solution that encrypts transaction data and 
can allow financial privacy to be provided to all users. 
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i) Dynemix solves the entry-threshold issue by being integrated into Liberdyne. 

Dynemix is integrated into the Liberdyne messenger to provide users with a more familiar 
experience. Newcomers do not have to study the peculiarities of cryptocurrency technology to 
start using Dynemix. Instead, the user only needs to install Liberdyne and start using a familiar 
type of app that happens to have additional functions, which are available through a simple 
and intuitive interface. Minting functions are set up automatically, so the user does not need 
to do anything at all. 

The combination of these features makes Dynemix the ultimate blockchain payment platform and 
a true breakthrough in cryptocurrency technology. 

2. Data structure of Dynemix 

Dynemix is based on an ever-growing transaction ledger called a blockchain. Dynemix blockchain 
consists of a sequence of master-blocks that are added in linear order. 

Unlike most other blockchain systems, participants in Dynemix can operate not only directly with 
complete data blocks but can also employ a simplified data structure, which is derived from blocks 
and called a quilt. 

1) Blockchain – master structure 

 

Essentially, each master-block represents a collection of shard-blocks and contains the following 
data: 



29 

 

 the hash of the previous master-block; 

 a set of shard-blocks; 

 a set of minters’ signatures for shard-blocks. 

Each shard-block contains: 

 the hash of the previous master-block; 

 a set of transactions. 

All data is organized into a hash tree. 

2) Quilt – derived structure 

Quilt is designed to provide better optimization and scalability. Operating in the quilt mode is most 
efficient in the case of balances’ homomorphic encryption implementation, which is the particular 
setting for which quilt was designed. Even without encryption, however, quilt can provide an 
increase in performance, although the result is not as impressive as in the specified case. 

In the early stages, quilt will not be engaged, and Dynemix will fully operate in the blockchain mode, 
which assumes the propagation of complete data blocks among all nodes. 

At a certain point, however, balance encryption implementation should be considered in order to 
comply with financial privacy standards. The system was initially designed to provide a smooth 
subsequent transition to an encryption scheme. 

Balance encryption will inevitably affect performance. The weight of transactions and 
computational overhead will dramatically increase, thereby possibly dropping throughput on the 
blockchain layer by an order of magnitude. To partially compensate for the performance decrease 
while maintaining the desired level of scalability and decentralization, full nodes will be allowed to 
operate with a pruned data structure that is derived from the underlying blockchain. 
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Once minters of a shard construct a valid shard-block, they derive a data structure called a patch 
from the newly constructed block. While the shard-block contains transactions with all attributes 
included, the patch contains only changes of the state that are caused by transactions. The hash of 
the patch is included in the hash tree of the shard-block. 

At the master consensus stage, instead of exchanging complete shard-blocks, minters exchange 
patches and partial hash trees of shard-blocks, along with signatures. Thus, after reaching a master 
consensus, each minter will now possess a complete set of patches, which form a quilt. Essentially, a 
quilt represents the set of changes applied to the system state by a master-block of a given height. 

We assume that by the start of each round all minters will possess the current state of the system. 
Upon applying a quilt, minters will obtain a new state. Operating with quilts allows a significant 
decrease in computation and communication overhead that occurs after the shard consensus 
subslot. 

It can be easily observed that once full nodes begin operating in the quilt mode, the system will 
become less secure, as the validity of the state change is not verified beyond a shard consensus. The 
inevitable loss in security is circumvented by the presence of authorized master-nodes that perform 
fishermen functions. 

For a more detailed description of the overall security model, please refer to the next chapter. 

Although Dynemix will initially be launched without quilts, the following description of the 
system accounts quilt’s implementation as the final design that the system should obtain. Please 
note that some of the described functions of the system will not initially work completely in 
accordance with the description below. 
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3. Accounts in Dynemix 

1) Dynemix Namespace 

A user can interact with the Dynemix system on two levels: 

 With the help of public/private key pairs. This level resembles the approach used in most 
blockchain systems. Capabilities on this level are limited to issuing transactions. 

 With the help of a registered account. Most actions within the Dynemix/Liberdyne system 
require registration. 

During the registration process, not only are key pairs generated, but a username is also attached to 
the public keys. The entirety of all unique usernames chosen by the users during a registration 
forms the Dynemix namespace. 

 

Registration is a special type of a transaction. Once a user registers, it is impossible to alter or delete 
the username from the blockchain. That prevents any censorship attempts in the namespace 
service. 

Registration is implemented for the following purposes: 

a) Improving user experience 

The username database is stored within the blockchain, which guarantees the possibility of 
resolving a username to the public key at any time. Hence, any interactions within the system 
(for example, sending tokens) can be performed via a username. This makes the system 
simpler and easier for users to understand. 
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The namespace can be also used by other projects within the Dynemix ecosystem or even 
third-party centralized services. For example, by being combined with integrated 
decentralized cloud storage, the namespace can allow users to create different types of 
content that can be accessed by various services, apps or other users via the username.  

b) Statistics generation 

Since the system is completely decentralized, it is difficult to determine even the approximate 
number of users. The number of public keys with non-zero balances may help, but users can 
easily generate an infinite number of one-time keys and split their tokens among them. 

Registering multiple accounts does not make much sense, since users could still employ 
different public keys as separate wallets but have only one registered account at a time. 

c) Spam protection 

This feature is mostly useful for the Liberdyne messenger, as well as other potential projects 
based on the Dynemix platform, but it can be also used to counter the transaction spam issue, 
if such occurs. 

Initially, we plan to support free registration without any restrictions (except for CAPTCHA 
protection from bot registrations). In the case that we face significant trouble with spam and 
undesired content distribution, it is possible to complicate the registration process to make 
the Sybil strategy for malicious activities more resource-intensive. 

2) Verified namespace 

Since Dynemix is a decentralized system and the process of registration is decentralized as well, it is 
impossible to use standard methods of cyber-squatting resistance. 

To solve the problem of cyber-squatting it is reasonable to add a centralized service – the verified 
namespace. 

The verified namespace works similarly to verified accounts in centralized social networks (e.g. 
Instagram and Facebook). Once a publicly known user wants to get a confirmation mark indicating 
that a particular account belongs to him, he will provide the requested information and get a 
verified username. These usernames will form a separate namespace and will have priority over 
identical usernames from the general namespace in some scenarios. 

Verification can be also used to add a legal provable binding between a Dynemix account and a 
certain entity (a sort of certification), thus allowing entities that wish to use the platform for business 
purposes to gain more trust from users. 

Another critical feature of the service is its ability to restore an account in case of key loss. Account 
names may be valuable in themselves as a marketing tool, especially for large companies that make 
significant investments in brand marketing. The risk of irretrievable loss of the account may 
discourage such companies from using all of the system’s capabilities. Centralized account 
delegation may solve this problem and provide the necessary enforcement of the ownership of the 
account. 

4. Dynemix units – dynes 

Dynemix units are called dynes. Dyne is a derived unit of force in the CGS system of units. Currently, 
the term is barely used, so we will likely be able to give the word a second life and at the same time 
avoid confusion. 

We like the word for its association with power and, besides, it just sounds cool. 

Dynemix is not designed to support Turing-complete smart contracts, and hence tokenization will 
not be supported either. Dynes will be the only units circulating within the Dynemix ecosystem. 
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Adding certain on-chain derivatives may be considered, however, if the platform’s economy requires 
it during the evolution process. It is difficult to foresee the path of development at this initial stage. 

Dynes are utility tokens, which bear no other function except being a universal medium of 
exchange and are not backed by any real assets or obligations. Within the platform, dynes can be 
also used as stakes in the minting process. 

The initial issued volume will reach 1,000,000,000,000, or 1012, dynes. 

The minimum fractional unit is equal to 0.000001, or 10-6, dynes. 

Starting from the second master-block of the blockchain, new dynes will be issued as rewards for 
system support with each new master-block. 

For a more detailed description of the dyne issuance model, please refer to the Economics chapter. 

5. Dynemix transactions 

1) Transaction types 

Account transactions 

Register Registers a new user account 

Register verified Registers a new verified account 

Recover Allows public keys to be reset with the help of the master key (changing 
the password or master key) 

Token transfer transaction 

Transfer Transfers tokens between public keys 

 

Service transactions 

Stake/unstake Stakes or unstakes a specified number of tokens for minting 

IMIN Indicates readiness to participate in the minting of the next block 

Proof of fraud Incriminates a minter in an attempt at fraud, slashes the minter’s stake 
and restricts him from further participation 

Administrative transactions 

Administrative Allows special administrative measures to be applied in the case of their 
adoption 

2) Spam protection 

Since we follow the concept of free transactions, it raises the problem of spam – instead of sending 
one transaction with the desired amount (say, 100 dynes), a malicious user could deliberately send 
100 transactions of one dyne each, hence creating an unreasonable load on the system. To solve this 
issue, we adopt several restrictive measures: 

a) Limiting the number of transactions 

The system will accept only one transaction from each address in each block. This limitation 
will not significantly diminish the user experience, since Dynemix has a 10-second block time, 
and in very few cases will a user need to make transactions faster than that. If the user needs 
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to make several consecutive transactions, he or she may send them to the network and wait 
until they are processed. 

Business scenarios often require multiple transactions to be processed from one account at a 
time, however. To meet the needs of business accounts, Dynemix supports multi-output 
transactions. To protect the system from spam, fees are charged for each output of such 
transactions. Unlike most blockchain systems, which feature market-defined commissions, 
fees in Dynemix are predefined to improve the user experience. 

b) Limiting the transaction amount 

Another antispam measure is limiting the minimum amount of a user-generated transaction 
to one dyne. In case the total market cap grows high enough, this limit can be lowered to 
meet user needs. 

In case these measures prove insufficient, additional restrictions can be applied: 

a) Limiting the daily amount of free transactions 

According to the gathered statistics, it is possible to estimate the daily average number of 
transactions and limit free transactions to a certain number that would satisfy the needs of 
most users. 

b) Charging monthly fees 

We can set monthly fees for using the system. When a user issues his or her first transaction in 
a month, it should contain a predefined service fee, which is obtained by minters. After paying 
the fee once, the user can freely issue any number of transactions until the prepaid period 
expires. This approach resembles the conventional banking experience, as users usually pay 
annual or monthly card issuance and service fees to banks, which is why this approach should 
be familiar to most users. 

6. Financial privacy 

Most cryptocurrencies disclose transaction data, i.e. the number of tokens sent, the sender and the 
recipient. Since we are creating a platform for everyday payments, it would be advisable to solve this 
issue and ensure compliance with banking secrecy. A system that allows anyone to see the current 
balance and the entire payment history of any user is obviously less attractive to consumers than a 
system that can assure their financial privacy. 

When we started the project, several platforms (Monero, Zcash, Dash etc.) offered solutions that 
allowed the amount and/or the sender and/or the recipient of a transaction to be hidden. 

The problem was that all those platforms were UTXO-based blockchains, while Dynemix was meant 
to become an account-based system (a UTXO model requires higher traffic and storage overhead, 
which is intolerable for a system that is meant to scale up to thousands of TPS). Besides, the existing 
solutions drastically increased the transaction weight, RAM use or computation time. 

No balance-hiding solution for account-based blockchains existed at the time, which is why a 
completely new approach was required. 

Financial privacy in relation to blockchain consists of two conditions, each of which requires a 
separate technical solution. 

1) Hiding transactions’ balances 

We believe that this condition is of the utmost importance – hiding transactions’ amounts allows for 
the hiding of account balances, which are sensitive information that the majority of users would not 
want to be disclosed. 
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To solve this issue in an account-based system, we can use homomorphic encryption, as it allows 
computations on the ciphertext, generating an encrypted result which, when decrypted, matches 
the result of the operations as if they had been performed on the plaintext. 

Instead of storing balances and transaction amounts as plaintexts, we can store encryption keys and 
encrypted balances. 

Assume Alice wants to send 𝑥 dynes to Bob. She also wants her balance and the transaction amount 
to be hidden from Eve. As our blockchain is public, the only way to achieve this is to introduce 
encryption. 

 

Instead of subtracting 𝑥 from 𝐴 and adding 𝑥 to 𝐵, roughly speaking, we subtract encrypted 𝑥 from 
encrypted 𝐴 and add encrypted 𝑥 to encrypted 𝐵. 

Of course, Alice and Bob have different encryption/decryption keys, which is why 𝑥 should be 
encrypted twice (with Alice’s key and with Bob’s key) to be able to be subtracted from Alice’s 
balance and added to Bob’s balance. 

Then the following problem arises – Alice should prove that: 

 both ciphertexts encode the same value; 

 this value is positive; 

 her new balance is at least non-negative. 



36 

 

To achieve this, we need (non-interactive) zero-knowledge equality and range proofs. 

After a minter receives the transaction, he or she checks the validity of the attached proofs and 
performs the subtraction of 𝑥𝐴 from Alice’s balance and the addition of 𝑥𝐵 to Bob’s balance. 

If Alice wishes to perform a transaction with the disclosed amount, she can easily do so. This may be 
necessary if Alice wishes to leave evidence of a transfer of a certain amount to Bob in the blockchain. 

2) Hiding recipients’ IDs 

This condition is also important, because disclosing the recipient of the transaction allows for the 
identification of connections between users, but we suppose that this is not as crucial for most 
consumers as is balance hiding. 

Since Dynemix supports multi-output transactions and given homomorphic encryption 
implementation, the solution to this issue is trivial – instead of sending a transaction with one 
output (Bob’s account), Alice sends a transaction with multiple outputs, one of which is Bob’s 
account and the others are randomly chosen registered accounts. The amount transferred to 
random accounts is equal to zero, while the amount transferred to Bob is the actual desired sum. 

From Eve’s point of view, Alice sends an unknown number of coins to multiple recipients, and Eve 
cannot conclude that either of them are real recipients rather than just random extras, nor how 
many coins each of them received. 

Alice can arbitrarily choose the number of extra outputs, assuming that the more outputs she 
includes, the more she confuses Eve, but at the same the more she must pay (as fees are charged by 
minters for each additional output’s processing). 

Alice can also issue multiple transactions with multiple outputs, thus hiding the mere moment of 
the actual transaction’s issuance. The degree of obfuscation depends only on the number of dynes 
Alice is ready to spend as fees for extra outputs. 

A significant advantage of this approach is its high customizability on the client level. Since no 
patterns are predefined by the protocol, it complicates analysis attempts for a potential adversary. 

Interaction obfuscation turns out to be a paid feature, but it is justified by the excessive load put on 
the system by such transactions. We suppose that balance encryption will be sufficient for most 
users and that multi-outputs will be used infrequently. 

3) Problems of proposed solution. 

Before homomorphic encryption can be implemented, we must solve several major problems that 
arise with the proposed solution. 

a) Constructing suitable ZK-proofs 

Although homomorphic encryption theoretically can allow our standards to be met, as for a 
single account only an encrypted balance and public keys must be stored on-chain, thus 
saving a lot of space, the problem lies in the construction of the required ZK-proofs. 

The only currently available working solution is an additive modification of the El-Gamal 
encryption scheme, which requires calculating a discrete log in order to decrypt a balance. 
This task is NP-intermediate, and thus the solution is completely impractical. At the same 
time, constructing ZK-proofs for much more convenient cryptosystems (e.g. Paillier) could 
require a lot of time and resources for proving and verifying, and the proofs could be much 
larger than expected. 

We do not find it reasonable to use any solution that cannot allow a transaction to be quickly 
constructed even on a mobile device, which is why currently available concepts seem 
inappropriate. To develop a practical implementation that can meet our needs, further 
research is required. We are developing a system with a foundation for the quick and painless 
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implementation of homomorphic encryption (the architecture is initially optimized for 
operation with encrypted balances) when a suitable solution is fully developed. We cannot 
reliably claim when this may happen, however. 

We can note that homomorphic encryption and ZK-proofs as technologies are still in their 
infancy and improved solutions have yet to be developed. We should also note that the 
technology is relevant not only for blockchain systems but to various spheres of the computer 
industry, which raises our expectations for the potential rate of progress. 

For example, hardware giants are working on RAM-encryption technologies that can provide 
more security to cloud computing, but the currently presented solutions still feature 
computations with raw data on the CPU layer. Building a fully secure VM would require fully 
homomorphic encryption and computations directly on the encrypted data (the problem is 
briefly outlined here). For this reason, we can expect low-level optimizations that will help us 
build a more scalable system. 

b) The high risk of hidden attacks 

The encryption of all account balances obstructs the detection of attacks. 

If the adversary exploits a bug that allows the creation of new coins in an arbitrary amount, it 
can have a devastating effect on the system. When all balances are publicly observed, it will 
likely be detected quickly, and countermeasures will be applied (a rollback, in the worst case). 
When balances are encrypted, however, it may stay unnoticed longer, which is an absolutely 
unacceptable outcome. 

Although the state transition remains verifiable and even in the presence of master-nodes, 
which are expected to help keep the system secure and ensure the sufficient level of security, 
we suppose that it would be dangerous to implement the described technology on the 
platform scale until it was redundantly researched and tested. 

Any possible additional measures to mitigate the stated risks should be also considered, even 
if they come at a cost. 

7. Dynemix state transition 

As stated, a cryptocurrency platform that can meet all of the requirements to compete with 
centralized payment systems cannot be based on any existing protocol for reasons of technical 
limitations. We had to design our system from scratch and apply many unique features to achieve 
our goal. 

More details will be available in the technical documentation. Here, the protocol will be described in 
broad strokes, and its most important features will be explained in the next chapter. 

1) Stakes 

a) Staking 

Everything starts with stakes. Any registered user can send a stake transaction with an 
arbitrary amount, thus indicating his or her intention to participate in block production. 

As we intend to democratize block production and attain a high level of decentralization, we 
cannot set a high minimal stake threshold. Requirements that are too low, however, can lead 
to abuse and negatively affect security, which is why a point of balance should be determined. 

A stake transaction’s amount is publicly visible; hence, minter candidates have to partially 
disclose their balance to the extent of the stake amount. 

https://en.wikichip.org/wiki/x86/tme
https://arxiv.org/abs/1409.0829
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b) Restaking 

Since we initially assume that minting will be performed not only by users who adhere to a 
professional approach but also to a substantial extent by common users with consumer-level 
hardware, we cannot predict the percentage of stakeholders with 100% uptime. Although we 
implemented an adaptive algorithm for minter window selection that accounts for an average 
proportion of the available stakeholders, if the dispersion grows too high, it can have a 
negative effect on several properties of the system. 

If we encounter such a problem, it may be solved by setting a TTL for stake transactions or 
suspending the stake if the stakeholder skips a block. In this case, stakeholders will need to 
restake intermittently to indicate their availability. 

c) Unstaking 

If the user wishes to unblock the staked dynes to be able to spend them, he or she sends an 
unstake transaction. The staked amount becomes spendable after two blocks are minted 
above the block that contains the unstake transaction, which makes Dynemix more minter-
friendly than other PoS systems, as the stake in the latter is typically blocked for a long period 
of time for double-spend protection. 

2) I’m in 

 

Block 𝐵𝑛−2 

In a pseudorandom manner with the master-block’s hash as a random oracle, a set of eligible 
minter candidates for block 𝐵𝑛 is selected from the many accounts with active stakes. The 
stake amount correlates with the probability of being selected for minting, as the weighted 
sampling algorithm is employed. 

Block 𝐵𝑛−1 

Stakeholders picked by the algorithm send special IMIN transactions to the minters of block 
𝐵𝑛−1 to indicate that they are ready for minting. This is required to exclude inactive 
stakeholders and ensure that during the minting of block 𝐵𝑛 most of the assigned minters 
within each shard will be available. 
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IMIN transactions provide a solution to the problem of unavailable stakeholder nodes, which are 
considered faulty in terms of the consensus algorithm. 

Since we are assuming that a substantial proportion of stakeholders will consist of ordinary users 
whose nodes may be unavailable much of the time, there is a serious risk that liveness may be 
threatened by a large number of inherently faulty nodes. This is why an algorithm that verifies 
availability immediately before the minters are designated is required. The solution is detailed in 
the next chapter. 

3) Sharding 

Block 𝐵𝑛−2 

According to the average number of transactions per block in a recent period, the optimal 
number of shards that the system will split into for minting block 𝐵𝑛 is determined. 

Block 𝐵𝑛−1 

According to IMIN transactions, a minters’ committee for block 𝐵𝑛 is formed. 

Block 𝐵𝑛 

The minters’ committee is algorithmically sorted by shards and split into a set of shard 
committees. 

Since all information required for sharding is contained in blocks 𝐵𝑛−2 and 𝐵𝑛−1, the shard 
committee’s designation for block 𝐵𝑛 becomes consistent throughout the network after block 𝐵𝑛−1 is 
propagated. 

If the system splits into 𝑠 shards and 𝑖 IMIN transactions were recorded in block 𝐵𝑛−1, then each 

shard committee consists of 𝑖

𝑠
= 𝑚 minters. The size of the window of stakeholders selected in block 

𝐵𝑛−2 is algorithmically adjusted to maintain the required number of shards with constant 𝑚. In 
Dynemix, 𝑚 = 10 (although it may be subject to adjustments if needed). 

Determining 𝑚 is a security/overhead trade-off. The more 𝑚 we set, the more traffic overhead 
each minter node will suffer, which makes sharding less efficient, but at the same time, the more 
security will be provided, as the chance of controlling the supermajority in the shard for the 
adversary statistically decreases. 

4) Collecting transactions 

After the shard committee is appointed, minters collect incoming transactions. 

Transactions are assigned to particular shards according to the public keys of the issuers (in the case 
of registration transactions, according to the username). Upon receiving block 𝐵𝑛−1, each node in the 
network knows to what shard committee any given transaction in the pool is assigned. 
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To ensure fast verification, transaction issuers or other nodes that store transactions should send 
them directly to all minters of the corresponding shard. If the nodes behave accordingly, under 
perfect conditions all minters of the shard committee should have the same set of transactions by 
the end of the subslot. 

Still, even if the transaction senders try to multicast transactions to all assigned minters, due to the 
network delays and imperfect time synchronization, the sets may partially vary. To ensure the 
consistency of the transaction set, minters synchronize the collected data. 

5) Synchronizing the transaction set 

During this phase, each minter multicasts their 
collected data to other members of the shard 
committee. 

Each minter signs the hash of the collected 
transaction set and submits the set to other 
members of the shard. By the end of the time slot, 
the transaction set should become consistent 
within the shard. 

Minters may behave Byzantine and send 
different versions of the transaction sets to 
other members of the committee or submit no 
data at all. This situation is managed in the 
next phase. 

6) Verifying each other’s transaction commitments 

To reach a Byzantine agreement, honest nodes should possess identical transaction sets. Since 
Byzantine actors in the previous phase can act inconsistently, an additional round of data exchange 
is required. 

During this subslot, minters mutually exchange hashes of all the transaction sets received from 
other minters to verify that each member of the committee has the same total set available and 
that no one is trying to commit fraud. 
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If all minters are honest and non-faulty, each will get the same number of identical hashes, which 
means that the transaction set is consistent within the shard and that minters can proceed to the 
next phase. If there are Byzantine actors among the minters, however, additional actions are 
required. 

Assume a simplified model wherein we have a shard committee of three minters. Alice and Bob are 

honest, Chuck is Byzantine, and consensus is reached by 2

3
𝑚. 

a) Chuck commits nothing 

 

Alice and Bob exchange messages stating 
that Chuck has not committed anything. 
Since they exchanged their transaction sets 
in the previous phase, they can proceed to 
the next phase. 

b) Chuck commits a set to Alice and nothing 
to Bob 

 

Bob receives a hash of Chuck’s set ℎ𝐶 from 
Alice, and since he did not receive the set 
from Chuck directly during the previous 
phase, he requests Chuck’s set from Alice. 
After Bob receives it, the transaction sets 
become consistent, at least between Alice 
and Bob. 

Bob may suspect that Chuck is an adversary, 
but since Chuck’s malicious intentions are 
not provable, as he may simply have 
experienced connection problems in the 
previous phase, Bob does not apply any 
punitive measures. 

Alice may suspect that Chuck is an adversary, but from the other side, Bob could also be an 
adversary trying to frame Chuck. Alice cannot reliably determine whether each of the 
assumptions is true, and she does not apply any punitive measures either. 
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c) Chuck commits sets to Alice and Bob, but the sets are not identical 

 

Bob receives a hash of Chuck’s set ℎ𝐶𝐴 from 
Alice and finds that it differs from the hash 
of Chuck’s set ℎ𝐶𝐵 that he has received from 
Chuck. Bob requests Chuck’s set 𝐶𝐴 from 
Alice and Alice, having come to the same 
conclusions, requests 𝐶𝐵 from Bob. After 
they exchange Chuck’s sets, the 
transactions sets become consistent 
between them. 

Now, as Alice and Bob both know that 
Chuck is the adversary, each of them creates 
a special proof-of-fraud transaction, accusing Chuck of fraud, with both signed hashes of 
Chuck’s sets (ℎ𝐶𝐴 and ℎ𝐶𝐵) attached as a proof, and adds it to the transaction set. If the shard-
block proposed by Alice and Bob wins the consensus round, Chuck’s stake is slashed. 

The simplified model described does not take into account the possibility of multiple minters’ being 
controlled by the adversary, who can abuse the situation described in paragraph b by sending 
messages to some minters too slowly, thus keeping the transaction set inconsistent by the end of 
the subslot. 

To counter this opportunity and prevent the adversary from delaying the consensus, another rule is 
adopted – minters request the set only if it is known by at least 𝑓 + 1 other participants by the 
beginning of the subslot. Otherwise, the set is ignored by all committee members. 

7) Shard-blocks and the shard consensus round 

After all minters within the shard synchronize the known transactions, each of them processes 
transactions and builds a shard-block that contains the whole synchronized set. 

Minters exchange signed hashes of the shard-blocks to reach a consensus. Dynemix uses a 
synchronous authenticated multivalued Byzantine agreement model. If the required threshold of 
replicas proposes identical shard-blocks within the time subslot, this block is considered approved 
by the shard committee. 

Minters can propose only one shard-block during this phase, which is why they should build the 
same block as most other minters probably will; otherwise, the consensus will not be reached, and 
nobody will receive a reward. The optimal strategy to reach consensus is including all known 
transactions in the shard-block. 

If a minter proposes two different shard-blocks, he or she is accused of fraud by the honest minters 
and his or her stake is slashed. 

In Dynemix, the shard consensus threshold is set to > 2

3
𝑚. 

As a Byzantine agreement protocol used in Dynemix can tolerate 𝑓 faulty players of 𝑛 > 2𝑓 
participants in a (weakly) synchronous communication setting, the required majority value 𝑐 in a 
committee of 𝑚 minters can be set within 𝑚

2
< 𝑐 ≤ 𝑚 . Setting 𝑐 is a safety/liveness tradeoff. The 

more 𝑐 we set, the more resources the adversary must possess to approve a deviating shard-
block or fork the blockchain if synchrony is not held, but, at the same time, the fewer faulty 
minters can be tolerated. We have chosen 𝑐 >

2

3
𝑚 for shard consensus as an estimated point of 

balance. This value can be changed within the stated boundaries if needed. 
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8) Shard-block exchange 

After consensus is reached in the shard, minters establish connections with other shard committees 
and mutually exchange patches of shard-blocks (before the quilt layer is implemented, minters will 
exchange complete shard-blocks) with them. After the exchange is complete, all external minters 
request hashes of the shard-block from all shard committee members to ensure that nobody 
behaved in a Byzantine way. 

If Byzantine behavior was detected (e.g. somebody signed different versions of a shard-block), 
honest minters issue a proof-of-fraud transaction in the next block to penalize the malicious actors. 

9) Master-block and master consensus round 

After each minter has collected all patches (or complete shard-blocks), each builds a quilt and 
constructs a master-block. Minters exchange hashes of the master-block to reach the second BA 
agreement. 

The master consensus threshold in a minter committee of 𝑀 members is set to 3

5
𝑀. 

V. Dynemix Explained: Features And 
Tradeoffs 
Now that we have briefly described the architecture of Dynemix, we should explain why we 
implemented the mentioned solutions and how they help us reach the stated goal of building a 
next-generation blockchain payment system, as well as what tradeoffs we must accept on the way 
to this goal. 

1. Setting 

Dynemix was developed to operate in a specific setting, which should be outlined to clarify certain 
features of the protocol. 

In the beginning of the white paper, we stated a set of properties that we strive to obtain. One of the 
essential features is a high level of decentralization, which requires the following condition: 

 The system should be designed to let the maximum number of users be 
involved in the system’s support processes 

We intend to go back to basics and design a system that can be operated by common users with 
the help of home-class hardware, which corresponds to the original ideas of Satoshi that were 
embedded, but not embodied, in Bitcoin. 

1) Honest nodes 

The first difficulty we face is the need to revise the notion of an honest node. 

In a conventional setting, honest nodes not only refrain from doing anything that goes against the 
rules but also refrain from not doing something that is expected of them. In relation to many BFT-
style blockchain protocols, this refers to being constantly available at least for the nodes known as 
current stakeholders (or any other types of nodes that are expected to participate in a state 
transition). In the case that an average number of stakeholders who are offline exceeds the 
threshold, such protocols will eventually lose their liveness. 
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The developers of Algorand relaxed these requirements and introduced the notion of “lazy honesty,” 
which refers to users who honestly follow all their prescribed instructions when they participate in 
the protocol but are asked to participate to the protocol only very rarely (e.g. once a month) and 
with advance notice. 

This notion does not fit our setting either. If we assume that users can participate in minting with 
home PCs, we cannot expect them to hold any particular uptime – users can arbitrarily go online 
and offline at any moment, regardless of being selected for minting in any particular round, which is 
why we need to relax the boundaries of availability even further and operate with the notion of 
irresponsible honesty. 

Honest but irresponsible nodes are actors who do not commit any actions that deviate from the 
protocol but who can stop participating at any arbitrary moment and hold any arbitrarily long (up to 
infinite) period of unavailability. 

The described notion seems to have a lot in common with the sleepy model of consensus 
researched by Pass and Shi in their eponymous paper. Their model is abstract, however, and does 
not allow to easily derive particular practical conditions for which we are designing the protocol. 
To avoid confusion, we use a different term, which also places more emphasis on the partially 
subjective nature of the problem. 

Although the notion of irresponsible honesty seems to fit our setting, to provide a more precise 
description of the targeted practical environment, we should further refine the model and introduce 
the notion of weakly responsible honest nodes. 

In terms of Dynemix, weakly responsible nodes are actors who can arbitrarily refrain from 
participating even if asked to participate, but who, once accepted, hold some expected uptime, 
during which they perform all of their instructions. We assume that the more time that passes since 
the node committed its consent to participate, the more likely it is to lose availability. 

What does this all mean in practice? We assume that the vast majority of users will use the 
Liberdyne messenger (or any other third-party client that operates in approximately the same 
manner) as a client for interacting with the Dynemix network. Once a user obtains enough dynes to 
place a minimal stake and his or her hardware satisfies the requirements, the client engages in 
minting. 

After the stake is placed, we do not expect an average user to hold constant availability. It is obvious 
that, given that the client is run at home, the user can simply close the app or shut down the PC at 
any time. Under such assumptions, it is easy to conclude that practically any arbitrary 
uptime/downtime proportion is possible, which makes it look like the model of irresponsible 
honesty (as described above) or the sleepy model (as defined by Pass and Shi). 

We also rely on another assumption, however, which brings us to the model of weak responsibility. 
Despite the user’s ability to go offline at any time normally, in case he or she is selected to 
participate while being online, we expect the user to prevent losing availability and refrain from 
quitting by choice. In practice, this means that once the client figures out who has the right to 
participate in the creation of the next block, it alerts the user and prevents any kinds of soft 
shutdown until all the duties are carried out. The user is incentivized to wait, which makes us rely on 
his or her not closing the client until the time slot passes. At the same time, the more time passes, 
the less the user may have the opportunity to wait, if the need to shut down is urgent. Of course, this 
does not refer to situations when connection is lost due to a network or hardware malfunction, but 
this is expected to occur very rarely. 

According to the described model, we expect the following distribution of participants: 

 Weakly responsible nodes – the majority of participants. This category is represented by low-
stakes users, who will likely engage in minting via their home/office hardware. The presence of 
such actors will greatly benefit decentralization. 

https://arxiv.org/abs/1607.01341v1
https://eprint.iacr.org/2016/918.pdf
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 Responsible nodes – a minority of participants. Stakeholders who have placed stakes large 
enough to secure frequent participation will likely hold constant uptime. At a certain point, it 
will become economically feasible to run a node in a data center to reduce omissions. 

 Irresponsible nodes – the smallest minority of participants: those who lose connection during 
participation. We assume that a small share of such nodes will be also present, as faults are 
inevitably expected to occur. 

This model is inherently easily managed by Nakamoto-style protocols; it is not so trivial, however, to 
cope with it for a BFT-style linearly consistent protocol. To conform to the described model, the 
following measures were applied: 

a) IMIN transactions 

After a stakeholder is chosen to participate in block creation, he or she is expected to confirm 
his or her consent by issuing a special IMIN transaction directly prior to the process start. This 
measure circumvents each participant’s initial lack of awareness of each other online status. 
After observing a set of IMINs in block 𝐵𝑛−1, all participants come to a consistent view on the 
set of the selected stakeholders who are actually available at the time, which prevents offline 
nodes from affecting liveness. 

We assume that there is always a known average proportion of available and ready 
stakeholders with only some insignificant deviation. If the statistically determined proportion 
does not hold within tolerable boundaries of variation, it may negatively affect system 
throughput; i.e. if the number of the collected IMIN transactions is much lower than expected, 
the system will split into a smaller number of shards. In most cases this will have no 
consequences; if the system is running at the capacity limit, however, some transactions may 
not fit in and will be left in the pool. 

IMINs help maintain liveness in the presence of weakly responsible nodes; the question of 
safety, however, is ambiguous. 

On one hand, we assume that the adversary keeps his or her nodes always available and ready 
to fulfil his or her sinister plots, which is why non-responsible nodes who refuse to participate 
despite being chosen contribute to a higher relative number of adversarial nodes in the minter 
committee. 

On the other hand, providing an opportunity to behave in a weakly responsible manner 
without any penalties contributes to a larger global stake pool size, which in turn decreases 
the relative share of the adversary and reduces his or her chance of being selected for minting. 

It is hard to predict which of these features will outbalance the other one in practice. 

Although IMINs provide a solution to the problem of weak responsibility and assure stronger 
liveness guarantees, at the same time they can negatively affect liveness from the other side. 
In case no IMIN transactions are added to block 𝐵𝑛−1, a minters’ committee for block 𝐵𝑛 cannot 
be formed, which terminates the protocol’s execution. 

Minters are incentivized to process IMIN transactions (minters of block 𝐵𝑛 distribute rewards to 
minters of block 𝐵𝑛−1, which is why minters of the current block are always interested in the 
creation of the next block), hence, considering the redundant number of minters for each 
block, the mentioned situation is extremely unlikely to happen. If this issue is considered a 
feasible threat, it is possible to implement an algorithm to resolve it. 

It is important to emphasize that IMINs as a solution for weak responsibility can only be 
implemented into a protocol that can guarantee a fair block proposal, which is, in relation to 
the issue at hand, adding all known IMIN transactions into the next block regardless of the 
proposer’s preferences. If the protocol uses a conventional block-proposal algorithm, a 
malicious actor can simply censor the IMIN transactions of other stakeholders, thus 
permanently seizing control over the system. In Dynemix, this issue is resolved by our novel 
consensus solution called Guess My Block game, which is described below. 
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b) Constant reshuffling of minters 

We assume that after a minter issues an IMIN transaction, he or she is expected to reliably hold 
availability only for a short period. For this reason, he or she is obliged only to participate in the 
creation of a single block and the subsequent reward distribution phase. 

c) No leaders or other single points of failure 

The Dynemix protocol is completely leaderless. If we assume the presence of irresponsible 
nodes, it is obvious that leaders can also behave irresponsibly. If we apply a view-change 
procedure in case a single shard leader fails, it will either lower the performance of the entire 
system or simply prevent consensus in the shard, which opens up an opportunity for an attack 
on liveness or fairness. 

d) More important actions first 

We assume that the more time that has passed since a minter issued an IMIN transaction, the 
less we can rely on his or her availability. As the protocol execution advances within each 
round, this fact is taken into consideration. 

2) Time 

Dynemix operates in a setting with synchronized clocks adjusted to the global time. The time is 
divided into discrete slots of 10 seconds (this is subject to adjustment if required), which each 
correspond to a block created during that time slot. A time slot is split into a number of subslots 
corresponding to the phase of the protocol. 

We assume that all nodes, once connected to the system, synchronize clocks and have an 
approximately consistent view on the current protocol execution phase. Nodes are allowed to 
experience minor discrepancy in their local views on the current time, given that this discrepancy is 
insignificant on the scale of the determined subslots. 

Known time synchronization algorithms for peer networks can be classified into two categories: 

a) Symmetric (peer-to-peer) 

In symmetric protocols, each participant has equal influence on the system time. This 
approach can be used for blockchains mostly in a limited-view manner, which corresponds to 
communication overlay of various peer networks, including blockchains. 

Intuitively, the symmetric approach seems to be the most relevant to a blockchain system, as 
it satisfies the principles of decentralization; it also, however, has several shortcomings. 

The first one is its highly questionable Sybil resilience. The attacker can spread his or her 
infected view over the system, thus massively breaking consistency, or can perform an eclipse 
attack targeting particular nodes. Although there are several proposed techniques for the 
Byzantine setting, they may not be robust enough when the liveness and consistency of a 
blockchain is at stake. 

Another problem is scalability. We assume that peer nodes cannot have a complete view of 
the system and are limited to a local view, which consists of other nodes with which the node 
can interact. As the system scales up, the relative size of the local view of each node shrinks, 
which makes the protocol more vulnerable, especially in the presence of a powerful adversary. 

b) Asymmetric (client-server) 

The mentioned shortcomings of symmetric design can be mitigated by moving to an 
asymmetric scheme. In asymmetric design, specially appointed nodes serve as master-servers 
for the rest of the network (or a more complex multi-level hierarchy can be used), which allows 
the number of time-setting servers to be limited as desired. 



47 

 

Asymmetry solves the problem of scalability, but providing more resilience still requires 
additional measures. The obvious solution would be binding a resource to the time-setting 
powers of a time server, which can significantly hamper a Sybil attack without centralizing the 
process. In relation to Dynemix, this means creating Proof-of-Stake time servers. This will likely 
require a sophisticated solution, however, which would require additional research and 
obviously would not contribute to better overall performance. 

Having assessed all pros and cons, we conclude that currently the most optimal solution is simply to 
use public NTP infrastructure for time synchronization. This solution can reasonably be criticized for 
relying on an external source, which does not seem appropriate for a truly decentralized system; it 
provides certain benefits, however, that make this decision much less controversial: 

 NTP is the most popular time synchronization solution to date. It has existed for decades and 
tested against various attack vectors. Given that scalable time-sync protocols for blockchains 
(and peer networks with Byzantine actors in general) are still in their infancy, it may be 
reasonable to turn to a more reliable solution, at least until a robust decentralized protocol is 
designed and tested. 

 Engaging NTP will bind the system to the external infrastructure to a certain extent, which can 
provide more robustness. Given that time sync will be left out of bounds of the blockchain 
protocol, it will not be possible to distinguish the particular fraction of NTP infrastructure that 
is used by the system. For this reason, the adversary will not be able to aim specifically at 
Dynemix, but instead will have to attack the entire NTP infrastructure, which is used by a huge 
array of various systems. 

3) Communication 

We use the ∆-bounded model of communication. Whenever each node sends a message, this 
message is received by a recipient node within ∆ delay. All messages are cryptographically signed, 
which ensures authenticated communication based on the global PKI setup. 

The protocol does not require constant strong synchrony and makes progress as long a threshold of 
designated replicas hold a bounded delay ∆ during each round of execution. At the same time, 
nodes that temporarily lose connectivity are allowed to rejoin the protocol and restore consistency. 

Essentially, we adopt the model of weak synchrony as described by Guo, Pass and Shi. We consider 
this model the most realistic description of the practical setting that we assume. 

4) Lock-step and responsiveness 

Dynemix is designed to operate in a lock-step execution manner, which means that the protocol 
makes progress in strictly predetermined time intervals, which are set according to the estimated 
communication latency, bandwidth and computation delay assumptions of the peer nodes. It may 
seem much better to achieve responsiveness, however. The protocol is considered responsive if the 
progress is made according to the actual communication and computation delays of the 
participants, independent of the expected upper latency bounds. 

Responsiveness is thought to be a feature of asynchronous protocols. One can, however, envision a 
sophisticated hybrid solution that could bring responsiveness into the synchronous model as well. 
For example, in Thunderella (and several other recent solutions), the mentioned property is achieved 
by packing an asynchronous algorithm into an underlying synchronous algorithm, thus achieving 
responsiveness on the fast optimistic path and keeping the minority corruption tolerance on the 
slow fall-back path, which is engaged once the optimistic conditions are not met. 

As we stated in the beginning, fast finality is one of the essential features of a decentralized 
payment system, which raises a question: can we upgrade Dynemix to achieve responsiveness? 
Since we are designing our protocol from scratch, we are not bound by any particular models or 
restrictions, and it looks tempting to apply some tricky solution that can help speed up the system. 

https://eprint.iacr.org/2019/179
https://eprint.iacr.org/2017/913
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As an answer to that question, we would say rather more "no" than "yes." There are several 
fundamental factors that deprive us of such an opportunity. 

a) All replicas need to wait for the end of the time slot to make sure that everyone had a 
chance to commit. 

If we allow the protocol to proceed after obtaining a threshold of signatures at the shard 
consensus stage, slower minters will be deprived of the opportunity to participate and receive 
a reward. Such a situation will give an unfair advantage to those who run nodes in fast data 
centers on powerful hardware and will disrupt the system of essential economic incentives of 
the protocol. 

If we tighten the optimistic conditions from obtaining a threshold to obtaining all signatures, 
given the total number of participants, it is highly unlikely that not a single one of them would 
experience a communication fault or simply behave unresponsively, which means that such 
optimistic conditions will happen so rarely that it barely makes sense. 

A similar situation occurs at the master consensus stage. We need to assemble the most 
complete set of shard-blocks, which means that we can either proceed only after all expected 
shard-blocks are propagated or wait until the respective subslot expires. 

Moreover, even after obtaining all signatures or collecting all shard-blocks, it is still preferable 
to wait until the end of the time slot to assure the opportunity to present a proof of fraud in 
case adversarial behavior is detected. From that perspective, responsiveness makes the 
system less secure. 

b) Time slots should be consistent among all nodes, including those who currently do not 
participate in the consensus. 

Most BFT protocols separate the participants of the state transition procedure from the 
external nodes. For example, in PBFT, an external node (denoted as a client) sends an input 
value to one of the participants (denoted as the leader), who then reaches a consensus with 
the other participants (denoted as backup replicas) and provides the agreed output value to 
the client. 

In variations adapted for blockchains, the leader assembles a block from transactions that he 
or she somehow obtained beforehand, drives a consensus with other replicas and propagates 
the resulting output-block through the network. Commonly, input values are propagated 
through the network via a gossip protocol, which ensures that each time a node is selected as 
a leader, it possesses a large chunk of currently pending transactions. A node that issues a 
transaction does not need to send it to particular nodes at a particular time – gossip assures 
that the transaction will get to a leader with an expected modest delay with high probability. 

Dynemix, on the other hand, features a completely different input value-submission algorithm. 
A critical condition for it to work properly is that the client submits transactions to a 
predefined set of replicas during the prescribed time slot. All nodes in the system (including 
both clients and replicas) should have a consistent view on these subslots for each round of 
protocol execution, which contravenes the notion of responsiveness. 

This algorithm is implemented to achieve the crucial property of conventional centralized 
payment systems: impartial instant processing of all transactions that were sent to the system, 
which is undoubtedly a higher priority than achieving responsiveness. 

2. Censorship and transaction fees 

In the beginning of the white paper, we mentioned two important features of a decentralized 
payment system that we intend to achieve: 

 The system should instantly process all transactions that users send to the 
network. 
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 Transactions should be processed without fees. 

These features will help raise the level of user experience to the level of existing conventional 
payment systems, which is an essential condition that can allow a blockchain platform to compete 
with those systems on equal footing. 

Most current generation blockchains (whether of a PoS or PoW design) rely on a leader who 
proposes block candidates. Other nodes vote for the proposed block and the network either accepts 
or rejects it. 

According to this approach, the leader assembles the block at his or her own discretion and is free to 
reject any transactions. He or she may consider the proposed fee insufficient or may simply have 
personal feelings about the transaction issuer. For this reason, users must compete for the leader’s 
favor (in most cases by offering a higher processing fee), which severely deteriorates the user 
experience compared to conventional payment systems, as they process all transactions without 
any preference. Furthermore, this approach creates the preconditions for censorship. 

Such an approach is especially dangerous for Dynemix, since we have implemented a solution for 
maintaining liveness in the presence of weakly responsible nodes (the described above IMINs) that 
strongly relies on impartial block proposal. The ability to censor transactions can lead to the capture 
of the system by the adversary. 

Although there is a number of projects that addressed the problem of censorship (for example, 
Honey Badger introduced multi valued transaction set proposal), to date no one managed to get 
close to the stated parameters. 

As we intend to process transactions for free, it complicates the task even further – why would the 
leader put any particular transaction into the proposed block, if he or she has no incentives for doing 
so? This issue may seem insoluble within the currently available concepts, and to date, we have seen 
no solution that can help achieve both stated features assuming the non-altruistic behavior of 
participants. That is why we had to develop a new design of a block proposal algorithm and 
introduce a completely different approach. 

3. Guess My Block game 

1) Brief description 

Our solution to the problem is offering minters to play a game with incomplete information, in 
which the optimal winning strategy implies adding all known transactions to the proposed block 
and the resulting consensus between players is reached via a synchronous authenticated 
multivalued Byzantine agreement. 

In Dynemix, no leaders are appointed in shard committees. All minters propose their own shard-
blocks on equal footing and have equal votes during the multivalued consensus round. The voting is 
carried out not by accepting or rejecting a shard-block proposed by the leader, but by proposing 
identical or non-identical shard-blocks by players. 

If the majority (supermajority) required to reach a Byzantine agreement propose identical 
shard-blocks, their blocks win and all minters who proposed those blocks receive a reward. The 
minters who proposed different versions of the shard-block or proposed nothing are not 
rewarded. 

If identical shard-blocks are proposed by an insufficient number of minters, a consensus is not 
reached, the shard-block is skipped and no one receives a reward. 

If someone proposes multiple different versions of a shard-block (behaves Byzantine), his or her vote 
is not counted by honest minters and his or her stake is slashed. 

This game implies the need to guess the block that most of the minters will propose without being 
aware of the preferences of all the others. The optimal winning strategy is to commit a block 

https://eprint.iacr.org/2016/199.pdf
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assembled according to the default rules, which means including all known transactions (or any 
other set of rules that is reliably expected to be supported by the majority of players). 

2) Game explained 

Assume that Ivan is a transaction issuer and that the shard committee consists of 𝑚 = 3 minters, 
where Alice and Bob are impartial rational players and Chuck does not like Ivan and intends to deny 
his transaction. At the same time, none of the minters can coordinate his or her actions with others, 
Ivan is not aware of Chuck’s intentions and a consensus in the shard is reached by 2

3
𝑚. 

Also assume that all messages between the participants are delivered within the expected ∆-
boundary and that nobody behaves Byzantine (the Dynemix protocol can tolerate communication 
faults as well as Byzantine behavior, but to simplify the model these conditions are neglected in the 
following description). 

a) Ivan sends the transaction only to Chuck. 

 

Chuck receives Ivan’s transaction 𝑇𝐼 but has no intention of adding it to the block. For this 
reason, during the transaction sets exchange phase, he submits his set to Alice and Bob, but 
does not include 𝑇𝐼 . He receives Alice’s and Bob’s sets and sees that they are not aware of 𝑇𝐼 . 
Since none of the minters included 𝑇𝐼 into their sets, they all propose identical shard-blocks 
without 𝑇𝐼 and each of them gets a reward. Chuck wins. 

For this reason, Ivan should send his transaction to all minters of the shard. 

b) Ivan sends the transaction to Alice and Chuck. 

 

Chuck receives Ivan’s transaction 𝑇𝐼 but has no intention of adding it to the block. During the 
transaction sets exchange phase, he submits his set to Alice and Bob but does not include 𝑇𝐼 . 
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He receives Alice’s and Bob’s sets and learns that Alice was aware of 𝑇𝐼 , while Bob was not. 
Since Alice sent Chuck a set with 𝑇𝐼 , Chuck assumes that she sent the same set to Bob. 

During the hash exchange phase, he receives the hash of the Alice’s set ℎ𝐴 from Bob, and 
since it is identical to the hash of the set that he received directly from Alice, he is now sure 
that Alice and Bob are both aware of 𝑇𝐼 . Chuck knows that if Alice and Bob propose identical 
shard-blocks, they will win the consensus round regardless of his decision. He has no choice 
but to commit a block with 𝑇𝐼 included if he expects to receive a reward. 

c) Ivan sends the transaction only to Alice, but both Bob and Chuck dislike Ivan. 

 

Now the game gets complicated. Not only does Chuck want to reject Ivan’s transaction, but 
Bob also intends to do the same. At the same time, Bob and Chuck are independent minters, 
their actions are not coordinated and they are not aware of each other’s censorship 
preferences. 

Even if Bob and Chuck received 𝑇𝐼 , neither would include 𝑇𝐼 in their sets, but to their 
misfortune, Ivan sent the transaction to Alice, who is impartial. She includes it in her set, and 
after the exchange phases, Bob knows that Alice and Chuck are assuredly aware of 𝑇𝐼 , and 
Chuck knows that Alice and Bob are assuredly aware of 𝑇𝐼 . 

Both Bob and Chuck would prefer not to include 𝑇𝐼 in the block, and if they propose identical 
shard-blocks without 𝑇𝐼 , they will win the consensus round, 𝑇𝐼 will be rejected, Bob and Chuck 
will receive a reward and honest Alice will be left without a reward. 

Since they are uncoordinated, however, they cannot be sure of each other’s intentions 
(meaning their mutual agreement not only to reject 𝑇𝐼 but also whether to reject or accept any 
other transactions). Chuck may suspect that Bob also dislikes Ivan and might be willing to 
reject 𝑇𝐼 , for Bob did not submit 𝑇𝐼 to Chuck in the set exchange phase, but this is a too weak 
assumption to rely on, unless Ivan is the most hated person in the world. 

Chuck and Bob may turn to the rushing strategy: that is, holding their shard-blocks until they 
see all the other proposed blocks and committing their blocks afterward. If they do so, 
however, both will only get the hash of Alice’s shard-block with 𝑇𝐼 included and eventually 
each of them will be forced to make one of the following decisions: 

 To wait more and risk missing the moment when the time slot expires, and thus not 
getting a reward. 

 To commit a shard-block with 𝑇𝐼 , thus winning the consensus round together with Alice 
regardless of the decision of the third player and getting a reward. 

 To commit a shard-block without 𝑇𝐼 and hope that the third player will side with him and 
commit an identical block. 
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The third option is obviously non-optimal, since it relies on a probabilistic assumption that the 
same censorship preferences will be supported by the consensus supermajority. To a certain 
extent, this assumption may be eligible with a single 𝑇𝐼 and only one remaining waiting player, 
whose decision will determine consensus, which means that the voting simply turns binary. 

If there are ten minters in the shard, however, and Chuck intends to reject the transactions of 
different issuers (say 𝑇𝐼 and 𝑇𝐷) simultaneously, he cannot rely on others having exactly the 
same preferences. Some may agree with rejecting 𝑇𝐼 , but at the same time, they may not 
agree to reject 𝑇𝐷 , which is why they may prefer to side with the honest minters. 

Since the voting is not binary and implies a huge number of potential proposals, no reliable 
assumptions on the censorship preferences of other players can be made, and no unitary 
adversarial strategy under the uncoordinated adversary assumption can be predicted. 

When each rational minter makes a choice, he or she presumes that there can possibly be up 
to 𝑚 − 1 honest minters (ones who follow the default rules, in our case) and up to 𝑚 − 1 
adversaries, which makes the odds even, but at the same time, honest minters will propose 
only one variation of a shard-block, while the adversaries can possibly propose up to 𝑚 − 1 
different variations chosen from 2𝑡 combinations, where 𝑡 is the amount of all known 
transactions, making including all transactions into the block the optimal strategy for both 
rational and altruistic players. The default known censorship rules may be considered a focal 
point of the game. 

3) Game’s guarantees 

Guess My Block game ensures with high probability that each 𝑇𝑛 will be added to the next block, 
given that both of the following assumptions are true: 

 𝑇𝑛 was received by at least one player, who does not intend to reject 𝑇𝑛 . 

 Players who intend to reject 𝑇𝑛 do not form a coordinated consensus threshold. 

Guess My Block may not be efficient if the overwhelming majority of minters start arbitrarily 
rejecting transactions from issuers, ultimately reducing their sets to zero. This threat is less relevant 
to blockchains that feature commissions for transaction processing, but this may cause a problem 
with the free-transaction design of Dynemix. 

The fundamental limitation on the way to creating a solution for a fully rational environment is the 
inability to non-interactively prove that certain data were transferred from one node to another. As 
the transaction sender cannot prove that he or she actually tried to commit a transaction to the 
minter, we cannot apply any punitive measures on minters who refuse to add certain transactions 
to their sets. 

On the other hand, with the free transaction concept, there are no incentives to include any 
transactions in the set exchange phase, which is why at least one altruistic committee member is 
required. Even considering that we designed Dynemix in a way that allows for the participation of 
common users, who are less likely to break the protocol rules without a really strong reason, we still 
find it reasonable to add an additional incentive to include more transactions in a block. 

4) Additional incentive 

To ensure the appropriate behavior of rational participants, we added a coefficient that increases 
rewards for minters of those shards whose shard-blocks include more transactions. 

Since the rewards for block 𝐵𝑛 are distributed throughout block 𝐵𝑛+1, the minters of 𝐵𝑛+1 count 
balance changes included in the patches of 𝐵𝑛 and calculate the average number of transactions in 
the shards. According to the calculated value, a coefficient is applied to each minter and the reward 
is adjusted accordingly. 

The correlation between the number of included transactions and the size of the reward is 
sublinear. Otherwise, it would create incentives for spam-transactions – minters could create Sybil 
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accounts and add their own meaningless transactions to their sets, only to increase the overall 
number of transactions in the shard. This issue is also resolved by limiting the size of a minter’s 
transactions set, which disallow the adding of an arbitrary number of spam transactions. 

Minters are indirectly incentivized to behave correctly, as the value of their rewards depends on 
proper system operation, which is why we consider a moderate reward adjustment sufficient. 

5) Guess My Block in the master consensus round 

Master-blocks are assembled according to the principles of Guess My Block as well. Instead of 
transaction sets, minters exchange patches and shard-block headers (or complete shard-blocks) to 
collect the most complete set. 

Minters are rewarded only in the case that a shard-block signed by them is included in the master-
block, which incentivizes all members of each shard committee to spread their block as widely as 
possible. 

Considering that each rational minter will obviously vote for a version of the master-block that 
contains his or her own shard-block, the most complete set becomes the focal point. 

During voting, the shard committees are disbanded, and each minter behaves independently. The 

consensus threshold in a minter committee of 𝑀 members is set to 3

5
𝑀. 

With the growth of the system, a master consensus round will start creating a larger 
communication overhead. Unlike shard-committees, which feature a fixed number of 
participants, master-committees scale according to the size of the account base and the average 
TPS. At some point, the number of replicas will reach the thousands, which raises the question of 
further optimization. 

In this case, it is reasonable to appoint a number of delegates form each shard, who will be 
authorized to participate in a master consensus. The largest stakeholders among the minters 
who signed the shard-block seem to be the optimal choice. 

It can be clearly observed that at this stage we apply a lower threshold than during a shard 
consensus. By doing so, we respect the weakly responsible model described above. We assume that 
some minters may not make it to the master consensus, which is why the liveness threshold at this 
stage should be slightly relaxed. In addition, validity cannot be breached at this stage (in the 
meaning of state output), as all shard-blocks are already settled by the shard committees, which is 
why we consider it an appropriate measure to provide more liveness at the cost of consistency 
guarantees. 

One may ask a reasonable question – why can we not simply set the threshold to 𝑛 > 2𝑓, which is a 
known lower bound for a weakly synchronous communication model? Indeed we can. As we are 
developing a protocol for practical implementation, however, we are not restrained by the 
assumptions of any particular model, and we can take different approaches if we consider them to 
meet our needs. 

Unfortunately, protocols that tolerate minority corruptions can tolerate zero corrupted replicas 
under asynchrony, which is a fact that concerns us. Although we rely on weak synchrony, we still 
respect the probability of some extreme situations in which the system can be partitioned due to a 
massive network failure (caused by a war, a global cataclysm etc.). In this situation, we would prefer 
to retain at least certain minor consistency guarantees that can assure an acceptable level of safety. 

With the chosen threshold, the system can hold consistency in the presence of up to 𝑛 > 5𝑓 
corrupted nodes even under asynchrony, which seems sufficient given the very low probability of 
the occurrence of asynchrony, especially with the presence of a powerful adversary who can control 
communication. 

With the help of the described algorithm, we achieve the following: 

 assurance that all assembled shard-blocks will be included in the master-block; 
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 prevention of the grinding of different combinations of shard-blocks to find a random oracle 
that favors the adversary. 

It is worth noting that during the master consensus round, there can be a short opportunity for the 
adversary to try a grinding attack. To be able to grind a hash of the master-block, the adversary 
should meet the following conditions: 

 control the BA threshold of minters in at least one shard; 

 receive all other shard-blocks before grinding. 

If the adversary fulfills both requirements, he or she will have a very short time slot to grind different 
versions of a shard-block in order to find a master-block with a hash that will provide him a better 
representation in the next minter committee. 

We do not consider this attack vector to impose a serious threat for the following reasons: 

 Obtaining a consensus threshold in even a single shard is not easy to achieve, unless the 
adversary controls a comparable proportion of stake in the global pool. In other cases, he or 
she will gain an opportunity to take over a shard only extremely rarely at best. 

 A time window for grinding is so short and the number of possibilities is so huge that the 
probability of finding a hash that can provide significant advantage is neglectable even for a 
very powerful adversary. 

6) Coercive attack 

Although the adversary is required to possess > 2

3
 (the consensus threshold) of the total voting 

power to arbitrarily apply any desired censorship rules, the adversary who controls ≥ 1

3
 (the liveness 

threshold) of the voting power can try to force rational minters to follow his or her censorship rules 
under the threat of halting the consensus and preventing minters from receiving rewards. 

An attack can be executed in different ways, but the basic conditions are the following: 

 The adversary controls ≥ 1

3
 of the voting power and convinces the majority (or other required 

threshold) of the other stakeholders of the seriousness of his or her intentions; 

 The adversary publicly declares his or her block assembly rules and actually follows them. 

If all participants except the adversary are purely rational, they will conclude that if the adversary 
always proposes shard-blocks assembled according to his or her declared rules, he or she will either 
win or break the consensus. The only option to get a reward for others is to follow the declared rules. 

We do not consider this attack scenario realistic in the practical setting of Dynemix for two reasons. 

First, the adversary will unlikely be able to convince the required threshold of honest stakeholders to 
submit to his authority and let him control the system in this way. It is more likely that honest 
minters will reach an agreement and simply ban the adversary via a hard fork. Considering the size 
of the stake required for the attack described, the adversary will suffer tremendous damage. 

Second, such behavior is not completely rational from the point of view of the adversary himself. 
Considering the setting of Dynemix, the adversary cannot expect all minters to behave purely 
rationally. Instead of forcing others to follow his rules, he may end up simply stalling the protocol, 
which is against his own interests. 

If we assume that the adversary is irrational and actually intends to harm the system, we can do 

nothing against a malicious actor who controls ≥ 1

3
 of the voting power, as it is an inherent liveness 

threshold of any BFT consensus model based on an honest supermajority assumption. The only 
solution is to go beyond the protocol rules and slash the stake of the adversary via a hard fork. 
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Guess My Block is designed to operate in ∆-bounded (weakly) synchronous setting, which means 
that it can actually tolerate up to 𝑓 corruptions out of 𝑛 > 2𝑓 replicas as long as synchrony holds 
for the required threshold of replicas. We can take advantage of this property and simply set the 
shard consensus threshold to > 1

2
𝑚, which renders the described attack pointless, as it would 

require almost the same amount of resources as a consensus takeover attack. 

This will reduce safety guarantees, however, which we consider a higher priority (especially in 
relation to validity). For this reason, we decided to keep the threshold of shard consensus at the 
level of asynchronous BFT protocols, assuming that the described attack does not pose a serious 
practical threat. 

4. Scalability issue 

In the beginning of this white paper, we stated an important feature of a decentralized payment 
system that we intend to achieve: 

 The system should be capable of processing at least 10,000 TPS. 

Most first-generation blockchains suffer from the scalability issue. Many developers of recent 
projects have addressed the problem and proposed a number of solutions, which include different 
tradeoffs. 

The main problem at hand is a trilemma that states that higher scalability, security and 
decentralization cannot be reached simultaneously and that only two properties can be targeted. 

 

Known solutions to the scalability issue can be conditionally classified into two categories, 
depending on which vertex of the triangle is sacrificed: 

a) Reducing the number of validators to a small group (sacrificing decentralization) 

This approach solves the problem by limiting a possible validator set to a small professional 
group that possesses powerful hardware and broad bandwidth, which allow them to process 
and synchronize large data flows. This helps significantly raise the network delay, bandwidth 
and computing power assumptions. 

The set of validators can be limited directly by the protocol rules (DPoS) or by applying a high 
participation threshold. 

Though such a system may be formally considered permissionless, in practical terms this 
approach makes the system semi-permissioned, as the participation opportunity is drastically 
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limited, which inevitably leads to the emergence of a coordinated oligopoly, whose interests 
include preventing new players from joining. 

Unfortunately, following this approach leads to the severe centralization of the system, thus 
making it essentially pointless. This is a tradeoff that we cannot accept, which is why we had to 
search for another solution. 

b) Sharding the system (sacrificing security) 

Another approach is based on splitting the network into independent or semi-independent 
partitions, thus distributing the load between them respectively. 

Though sharding may be considered an effective solution to the scalability issue, it negatively 
affects safety. Sharding makes the system vulnerable to a dangerous attack vector of a 
fraudulent block approval. 

In classic blockchains, blocks, which are propagated across the entire network, contain all the 
data necessary to verify that the state change occurred according to the rules of the protocol. 

If an adversary tries to commit an unsubstantiated state change (for example, adding to his or 
her balance an arbitrary number of tokens that emerge out of thin air), the adversary’s 
deviating block will be rejected by all nodes. Since the adversary is disincentivized to make 
such attempts (in PoW systems, he suffers from the waste of resources, and in PoS systems 
with slashing rules he loses the stake), non-sharded blockchains are highly sustainable against 
this attack vector and feature strong validity guarantees. 

The sharding concept stipulates partial data propagation to ensure the increase in scalability, 
which is why the security of the entire system is reduced to the security of each shard. 
Considering that cross-shard interaction is based on trust between validator committees, 
succeeding in one shard allows the adversary to affect the entire network. 

As the stated approaches engender radical tradeoffs, we had to develop a non-trivial solution to 
maintain the desired level of decentralization without sacrificing security. 

5. A brief introduction to sharding 

Our sharding solution corresponds to the specific settings and limitations caused by the targeted 
properties we intend to achieve. To help better understand our approach, we will briefly describe 
known sharding concepts and issues from which each of them suffers. 

Typically, we can use two different sharding concepts: 

a) Without the global state 

This approach isolates the shard state and hence requires additional cross-shard 
communication about the majority of transactions (particularly transactions that change the 
states of accounts assigned to different shards). 

Though sharding with isolated states provides more scalability, it also begets more problems. 

The first and most important issue is security. As the state transition is performed and 
validated only within the shard, a successful attack on a shard breaches the security of the 
entire system. The most dangerous vector in this case is adaptive corruption or coordination. 
Since validator committees in isolated shards cannot be quickly reshuffled, the only option to 
mitigate the risks is to appoint very large committees and assume that the attack delay will be 
assuredly greater than the reshuffle rate. 

In addition to the security issues, complete sharding poses another serious problem – delayed 
finality. 
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The global state contains information only about shard assignments, and account states are 
stored only within shards to which accounts are assigned. Each shard works independently, 
and in the case of a cross-shard transaction, the problem of atomic commits arises. 

Proposed solutions to the problem feature sequential updates of the states of both the 
sender’s and the recipient’s shards in four steps, which significantly increases finality latency. 

Finally, complete sharding reduces data availability, which causes concerns, especially in 
relation to crucial data, such as the states of the accounts. 

b) With the global state 

Partial sharding involves the sharding of a state-transition procedure, but at the same time 
does not isolate shard states, assuming that all shard states are assembled into the global 
state, which is then propagated through the entire network. 

This approach helps solve certain security issues, such as adaptive corruption and 
coordination, by allowing the reshuffling validator sets as quickly as needed. It still features 
lower overall security than non-sharded designs, however, due to the partial data propagation. 

In addition, partial sharding allows us to solve the finality latency issue, and to increase 
availability of crucial data. 

On the other hand, it provides weaker scalability. 

6. Problems of sharding in Dynemix 

1) Our sharding scheme 

Having assessed all the pros and cons of the described designs, we concluded that currently the 
optimal solution for the scalability issue in Dynemix is partial sharding. We also find it feasible, 
however, to implement complete sharding architecture in the future. A possible solution would 
require further research, and it is more reasonable to start with partial sharding to assess the system 
behavior in practice under real-life conditions before moving toward the implementation of 
complete sharding. 

The main reason for such a decision is that we do not treat scalability as a property that should be 
enhanced as much as possible. We need to reach only a presumably sufficient level, exceeding 
which does not bring any more tangible benefits. There is absolutely no sense in providing a million 
TPS if we assume that the demand can simply never grow that high. 

According to our estimates, which are based on the available statistics on conventional centralized 
payment infrastructure, 10,000 TPS is the approximate upper level of demand under current 
conditions. Given that we are creating a potentially more advanced infrastructure than has been 
available to date, we may assume that the variety of use cases may expand in the future, pushing 
the demand beyond the stated boundary, but in any case it will unlikely be exceeded by an order of 
magnitude (especially considering that Dynemix is not designed to support Turing-complete smart 
contracts). 

Partial sharding allows us to reach the required scalability while at the same time providing 
solutions to several important issues, which is why we consider this option preferable. Complete 
sharding should be considered only if we face a substantial lack of scalability of the current design. 

In Dynemix, each transaction is assigned to a particular shard according to the transaction’s issuer. 
Minters of the shard process the transaction and update the states of both the sender and the 
recipient (or multiple recipients if the transaction has multiple outputs). The resulting state changes 
are then propagated as patches throughout the network so that the minters of the next block know 
the entire state of the system and there is no need for cross-shard communication during the 
transactions’ processing. 
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This approach allows transactions to be finalized within one consensus round and excludes the 
opportunity to abuse the train-and-hotel problem for double spending. With the help of a global 
state, we apply constant resharding, which helps instantly adapt to the current level of demand, 
provide a solution to the weakly responsible model of participation and resist adaptive corruption. 

It still brings a number of security issues, however. 

2) Adaptive attacks 

In the section describing the Guess My Block game, we noted that the game puts a number of 
restrictions on the system design that negatively affect different properties of the platform. 

One of those restrictions is the inability to involve a large number of participants. With the growth of 
the shard committee, communication overhead may become intolerable for most players, and 
scalability and decentralization will be negatively affected. This means that to provide sufficient 
scalability and keep the sharding solution efficient, we have to keep the size of the committee small, 
but this inevitably reduces security in the adaptive corruption model. 

Assume that the adversary intends to bribe minters to approve his or her fraudulent transaction or 
censor certain third-party transactions. As we apply sharding, this means that, instead of bribing the 
majority of stakeholders from the global pool, the adversary needs only to choose one shard 
committee after its designation and bribe the consensus supermajority within a single shard. 

As far as full nodes operate in the blockchain mode, the adversary can only commit a censorship 
attack. Validity is not jeopardized, for shard-blocks are additionally verified by all nodes in the system 
(in the same way as in non-sharded blockchains). Switching, however, to quilt opens an opportunity 
to approve an invalid state change, since validity stops being verified beyond a shard consensus. 
This threat is countered by the authorized master-nodes concept, which will be described further. 
Nevertheless, we still find it crucial to resist the corruption of shard committees. 

Theoretically, this problem may be solved by appointing a very large committee (which will increase 
the attack delay assumption), but we cannot afford this due to the Guess My Block restrictions. We 
need to solve the problem in a different way. 

Assume that we have a committee of ten minters, and given the BA threshold of > 2

3
𝑚, the adversary 

needs to bribe only seven of them. This task looks feasible if the adversary has enough time to 
coordinate the minters’ actions. 

With the help of the global state, however, we can apply the constant reshuffling of shard 
committees to deprive the adversary of the opportunity to coordinate minters. As shard committees 
are formed only for the creation of a single block, the adversary only has time between the 
propagation of block 𝐵𝑛−1and the shard-block commitment of block 𝐵𝑛 , which takes about 6–7 
seconds. Bribing minters in such a short period of time does not seem possible, making Dynemix 
secure in the presence of a mildly adaptive adversary. 

The same can be applied to adaptive coordination. If minters assigned to one shard committee try 
to coordinate their actions to approve a fraudulent shard-block that grants benefits to all attack 
participants, they will not have enough time to reach an agreement within the time slot at their 
disposal. 

We can conclude that Dynemix is not designed to be secure in the instant adaptive corruption 
model. We do not, however, consider the assumptions on which this model is based practically 
attainable in the Dynemix setting. 

3) Consensus takeover attack 

One of the typical attacks on blockchains features an adversary who obtains the amount of 
resources required to affect a consensus. By controlling a liveness or consensus threshold of the 
participating replicas, the adversary can influence several properties of the system. In relation to 
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most decentralized SMR systems, we can talk about validity, consistency and liveness as the set of 
properties that can be compromised by the adversary. 

The design of Dynemix allows to include an additional property in this list – fairness that is in our 
case, agreeing on an output derived from an uncensored set of inputs. In most blockchains, the set 
of transactions to be included in a block is chosen by the block proposer (or the leader), who acts at 
his or her own discretion, which is why fairness cannot be guaranteed during a state transition. With 
the help of Guess My Block, however, Dynemix provides certain fairness guarantees, which is why 
we can include fairness in a set of properties that can be held under normal conditions. 

Another important feature of the platform is a two-layer consensus, which means that the stated 
properties can be actually violated twice during a single round of protocol execution. This makes the 
attack scenarios more variative and complicated. 

Finally, Dynemix can function in the blockchain mode (meaning that all nodes operate with 
complete shard-blocks and master-blocks) or in the quilt mode (when only patches are exchanged, 
and a quilt is built during the master consensus phase). These two types of operation also feature 
different optimal attack strategies and adversarial thresholds. 

In this section, we will describe the most dangerous attack scenarios and try to evaluate the level of 
resilience that can be provided with the current design. 

First of all, we need to apply measures that impede the Sybil strategy. 

a) Weighted sampling 

The obvious measure is applying weighted sampling on a minters’ committee designation 
stage. This helps provide a better chance of being selected for stakeholders with larger stakes, 
and hence creates an incentive to increase the stake size, which negatively affects the 
adversary who splits his or her stake between Sybil accounts. 

Since shard committees feature a low number of participants, however, there is statistical 
dispersion that provides a non-zero chance that after a certain amount of rounds the 
adversary eventually may get lucky enough to have more than an average number of his or 
her Sybil accounts simultaneously assigned to a particular shard, which can lead to a single-
shard consensus takeover. 

Under such conditions, if the adversary tries to control shards, the optimal strategy is to split 
the stake among the highest possible number of Sybil accounts (the total stake of the 
adversary divided by the minimal stake amount) and wait until the dice rolls in the favor of the 
adversary. Considering the ten seconds’ block time, more than 3 x 106 reshuffles will occur each 
year, with the number of shards possibly reaching the hundreds, which provides an optimistic 
forecast for a patient adversary. 

b) Bin sorting 

To further impede the Sybil attack, the second step is added – sorting minters among shards 
in a way that assures a proportional stake distribution. Since the stated task is a variation of the 
partition and bin-sorting problems and hence is NP-complete, the optimal solution can create 
excessive computational overhead, which is why we use a simple approximate algorithm, as 
we do not need high precision. 

All selected minters are sorted by the sizes of their stakes and split into bins according to the 
number of shards. Minters from each bin are then sorted by shards as the picture below 
shows, excluding the final round, when a greedy algorithm is applied to assure better 
optimization. 

The algorithm forces the adversary to develop an adaptive strategy instead of simply splitting 
the stake among the highest possible number of Sybil accounts. It also solves the problem of 
uneven resources at stake, as simple random sampling would occasionally create shards in 
which minor stakeholders would form the Byzantine agreement supermajority. 
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Now let us investigate the most dangerous attack scenarios that could possibly be executed by a 
rational adversary. 

a) The system operates in the blockchain mode. 

When Dynemix operates in the blockchain mode, a single shard takeover does not pose a 
serious threat, since validity and consistency are assured during the master consensus; hence, 
the attack opens up only a censorship opportunity. Censorship starts posing a real threat 
when the adversary is capable of getting substantial representation in each block. Under such 
conditions, the adversary can censor third-party IMIN transactions, which can eventually allow 
the adversary to take over the entire system. 

If the adversary intends to seize control over the system, the most obvious solution is to 

acquire the amount of resources close to the master consensus threshold (3

5
𝑀). Once the 

adversary controls about 3

5
− 𝜀 of the global stake pool size, he or she will be able to control the 

master consensus and apply arbitrary censorship. 

By violating fairness and liveness at the shard level, however, the adversary can develop a 
strategy that will allow success with many fewer resources. 

Say the adversary possesses the amount of resources that allows him to continuously obtain a 
consensus threshold in a number of shards and a liveness threshold in a greater number of 
other shards, respectively. He censors the IMIN transactions of other stakeholders in those 
shards in which he obtained a consensus threshold, and blocks the consensus in those shards 
he obtained a liveness threshold. By doing so, he improves his relative representation in the 
next minters’ committee. If this strategy is consistently executed, eventually he may have a 
chance to obtain a master consensus threshold, thereby seizing control over the system. 
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According to our approximate tests, in such a scenario, controlling about 30–35% of the global 
stake pool can provide an opportunity to succeed within a reasonable time frame. 

b) The system operates in the quilt mode. 

When Dynemix switches to the quilt mode, an eventual shard takeover can allow the 
adversary to breach validity, since the complete transaction data is not propagated globally. 
For this reason, a rational attacker does not need to execute complicated strategies and is 
more likely to concentrate on a simple shard takeover and an approval of a fraudulent 
transaction. This attack would require the possession of fewer resources and poses fewer risks 
for the adversary than the master consensus takeover attack described above. 

According to our approximate tests, controlling only about 2% of the total stake would 
eventually allow the adversary to gain control of at least one shard for one round within a 
reasonable time interval. 

We should emphasize that the stated thresholds (2% and 30%, respectively) were obtained as 
results of approximate tests. The precise actual amount required for the attacks described will 
depend on the degree of the stakes’ dispersion and the adversary’s strategy, which is why further 
research on the subject is required for a more precise assessment. 

In the quilt mode attack, resilience seems to be insufficient, considering the possible consequences 
of an attack, and additional measures are required, which include the following: 

a) Increasing the potential global stake pool 

The percentage of resources in the adversary’s possession can have a totally different 
interpretation in absolute numbers, depending on the size of the global stake pool. When we 
evaluated Bitcoin’s practical attack resilience, we stated that a 51% attack could be described 
as a 0.3% attack if we took into account the amount of required resources relative to the total 
market value of the platform at the time of the attack. 

If we operate under an assumption of a 2% adversary’s stake (which is very approximate), we 
can conclude that creating a global stake pool of the size equal to 15% of the circulating 
volume raises the quilt mode security guarantees to the level of Bitcoin. 

We applied a number of measures to assure a larger global stake pool size (which at the same 
time helps raise the level of decentralization): 

 Setting a small minimal stake amount 

Although lowering the minimal stake threshold allows the adversary to create more Sybil 
minters, at the same time it lowers the participation threshold for the general audience, 
which is expected to provide more security and decentralization, thus balancing out the 
negative side effect. In addition, the bin-sorting algorithm renders the mentioned Sybil 
strategy non-optimal. 

 Securing low hardware and bandwidth requirements 

This helps common users participate in minting without excessive overhead, which, 
together with the previous measure, should lead to the involvement of more ordinary 
users. 

 Allowing funds to be unbonded quickly 

Since the stake amount can be unblocked and spent almost instantly, participants are 
incentivized to use all available tokens as stakes, which greatly increases the size of the 
potential stake pool. 
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 Setting a high issuance rate 

As Dynemix features constant token emission, the participants can have expectations of 
token devaluation, which is why rational owners of large numbers of coins will likely try 
to participate in the minting process to compensate for inflation. 

 Adopting the model of weak responsibility 

Allowing sporadic participation attracts additional stakeholders who cannot maintain 
constant availability. 

For a more detailed description of the token issuance model, please refer to the Economics 
chapter. 

Given the measures described, we expect the global pool to exceed the 15% margin, which 
means that Dynemix’s quilt mode may potentially operate on the same level of security as 
Bitcoin or even surpass it (although we should note that further research is required to reliably 
confirm this claim). 

b) Building the second line of defense 

Although the measures described help strengthen security and presumably even raise it to 
the level of classic PoW blockchains, we still find the security guarantees that we can provide 
in the quilt mode insufficient. 

As we intend to create a global digital currency payment system, more security is never 
superfluous. 

During the development of Dynemix, we considered the following measures: 

 Adding another round of consensus 

Since the problem of additional security can be solved by increasing the size of the shard 
committees, which we cannot afford due to the limitations of Guess My Block, we can 
simply add another BFT consensus round that involves the required number of 
participants. 

Say ten minters play Guess My Block and decide on a shard-block candidate. Upon 
receiving the BA result from the committee, another 500 randomly sampled notaries 
take a binary vote on the question of whether to approve or reject the shard-block 
candidate, thus confirming its validity. The second consensus round finalizes the shard-
block. 

Although this approach allows the shard takeover threshold to increase greatly (pushing 

it to 2

3
− 𝜀 of the global stake pool) by increasing the size of the validator sample to a scale 

that nearly nullifies the statistical dispersion, it negatively affects finality latency and 
throughput; a consensus round of hundreds of participants will take significant time to 
process due to the excessive communication overhead. 

Although there are some proposed solutions to reduce communication complexity for 
BFT algorithms, we do not find the inherent tradeoffs of these solutions acceptable. For 
example, using BLS threshold signatures can greatly reduce the amount of data 
exchanged between participants, but the concomitant increase in computation 
overhead can balance out the positive effect. 

 Involving authorized notary (witness) nodes 

Instead of adding another BFT consensus, we can offer authorized nodes to testify that 
the block was seen and verified. This approach does not necessarily require an 
agreement to be reached, and there can be different models of this concept’s 
implementation. 
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For example, we can use the reputation-based assignment of notaries, DPoS voting or 
any other method of choosing a set of trusted nodes that can vote for shard-blocks 
and/or master-blocks they consider valid. The more votes each block gets, the more 
reliably finalized it becomes (different designs can weaken the consistency guarantees of 
the system to eventual or probabilistic consistency). 

There can be of various sets of rules on the notarization procedure, but this model has a 
fundamental intrinsic flaw: since a small group of predefined players can decide whether 
the entire system accepts a block, this creates incentives for cartel formation and 
censorship strategies. 

 Involving fishermen 

If the previous solutions presume that the block is not accepted until it is signed by a 
certain number of verifiers, the fishermen concept presumes the opposite – the block is 
considered valid until a fisherman triggers a fraud alert. 

This approach ensures better decentralization, as fishermen cannot directly influence 
the finalization of valid blocks, but on the other hand, it inherits a dilemma that is hard to 
resolve. If we can manage to provide a reliable solution to the fisherman’s dilemma, this 
concept seems to be the most optimal for our system. 

7. Master-nodes for additional safety 

Our solution for the second line of defense is based on the concept of authorized fishermen. It 
allows security assumptions to be greatly increased, while at the same time retaining the 
decentralization achieved in the quilt mode and not delaying finality. 

1) Fishermen concept 

According to the initial notion, fishermen are nodes that perform various kinds of spot checks of 
data chunks in search of faulty data. If a fisherman finds a fault, he or she propagates an alert 
through the network and gets a reward. 

a) Unintentionally faulty data 

Fishermen may be an effective solution to provide redundant fault tolerance, but blockchains 
do not need it, because blockchain technology features high common fault tolerance by 
default. 

If we assume that a state change is replicated on a number of nodes that should get the same 
output in order to reach consensus, we can claim that sufficient redundancy is provided at the 
consensus round. There is a near-zero chance that a number of independent minters will 
simultaneously suffer the same common fault, which makes fishermen useless in this case. 

b) Maliciously faulty data 

Though there is clearly no point in the fishermen searching the blockchain for unintentionally 
faulty data, they might be interested in searching for maliciously corrupted data. If there is a 
possibility of a shard consensus takeover, there is also a chance of finding an invalid state 
change. 

The problem is that the adversary will simply not give out the data. Suppose the adversary 
creates a fraudulent shard-block and the fisherman requests the transaction data. The 
adversary knows that if he or she discloses the data to the fisherman, the latter will certainly 
propagate it through the network and every node will be aware of the fraud. That is why the 
optimal adversarial strategy is to keep the data unavailable. 
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c) Unavailable data 

If the adversary ignores the fisherman’s request for the data, which is the optimal behavior 
under the assumption that the data is fraudulent, the fisherman will have no proof of 
adversarial behavior and will not be able to trigger an alert and receive a reward. 

The only option is to allow fishermen to trigger an alert if the node ignores their requests, but 
this solution begets a dilemma. 

2) Fisherman’s dilemma 

Since concealing data is the optimal strategy for the adversary, we can state that fishermen have no 
economic interest unless we provide an opportunity to act in the case of data non-availability. On 
the other hand, if we grant fishermen such authority, it creates preconditions for its abuse. 

a) Either fishermen or minters can abuse their opportunities. 

If we try to set rules for a rational environment, any model of economic incentives will feature a 
contradiction, as neither is the fisherman able to prove that the minter received the request 
and ignored it, nor can a minter prove that he or she submitted the requested data. 

Suppose we granted fishermen permission to trigger an alert if minters do not satisfy the 
request. In this case, any fisherman can initiate a DDoS attack on their chosen minter at a 
near-zero cost. A malicious fisherman triggers an alert, and the entire network spams the 
minter with data requests. The minter cannot ignore it; otherwise, he will be accused of fraud. 
Nor can he prove that the fisherman’s claims were deliberately false. 

Suppose we added a kind of a stake requirement for fishermen, so that in the case that a 
fisherman triggers a number of false alerts, we can apply punitive measures on him. Then 
malicious minters will intentionally conceal valid data from fishermen in order to trigger alerts 
and present the data afterward, thus draining their stakes until no fishermen are left. 

In addition to the problem of unbalanced incentives, there is a problem of near-zero success 
expectations. 

b) The fisherman has low motivation, knowing that he or she will not succeed because the 
adversary is aware of his or her presence. 

If we suppose that the fisherman and the adversary are players who try to think a step ahead 
of each other, their attempts to develop a winning strategy in their rivalry will face a 
contradiction. 

The adversary knows that if he or she tries an attack, a fisherman will likely discover it and his 
or her resources will be wasted. This is why the adversary will likely refrain from attacking while 
fishermen are present in the system. 

The fisherman understands this and concludes that there is no economic sense in suffering 
the waste of resources with a near-zero chance of succeeding against the adversary. 

Under these assumptions, both the fisherman and the adversary find themselves playing a 
draw duel like cowboys in westerns. The only difference is that, in our case, none of the players 
is likely try to draw a gun due to expectations that his or her move will be effectively countered 
by the opponent, which means that the optimal solution is simply not to play. 

Taking into account the above, it can be stated that fishermen can strengthen the security of 
the system by doing absolutely nothing – the mere threat of their presence forces the 
adversary to adjust his or her strategy. 

On the other hand, there is always a possibility that some daredevil may commit an attack 
supposing that no fishermen are active due to the problem of low success expectations, which 
is why we do not consider this model sufficient for building security guarantees upon. 
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3) Major stakeholders as fishermen 

Our solution is built upon an assumption that there is always a category comprising nodes that are 
indirectly incentivized to keep the system secure, which is why they can perform the functions of 
fishermen even without any direct economic incentives. 

As we have explained, nodes can operate in either the quilt mode, which has lower hardware and 
bandwidth requirements, or the blockchain mode, which, not being fully affected by sharding, 
significantly raises the overhead. Nodes that keep the record of the entire blockchain are called 
master-nodes. 

Suppose the adversary overruns the consensus in a shard and commits a fraudulent shard-block. 
Other minters, who operate in the quilt mode, obtained only the patch of the shard-block and, 
unable to verify whether all the transactions initiated the state change occurred fully according to 
the rules of the protocol, accept the patch as valid. 

To verify the shard-block and make sure that it is valid, a node must obtain the entire shard-block 
from the adversary, but the adversary can ignore such requests, being aware of the consequences. 

Suppose there are a number of fishermen who constantly search blocks for faults and are 
authorized to trigger an alert in the case of data non-availability. The adversary understands that he 
or she has little time to profit from his or her fraudulent behavior. The only option is to try to 
exchange his or her coins for an off-chain asset as quickly as possible, before the fraud is detected. 

The adversary will likely turn to major players who can instantly accept a large transaction, which 
will include stock exchanges, market aggregators, providers of financial services etc. Given that such 
players are most likely to become victims of attacks and that they operate with significant token 
volumes, they have strong incentives to run master-nodes to assure better security for themselves. 

At the same time, as such services aggregate large numbers of resources, they will likely have 
significant constant coin reserves. Considering that minting provides additional income and due to 
the fact that, in Dynemix, minters are allowed to unstake almost instantly, which means that staking 
most of the reserves will not deteriorate their liquidity, such services are incentivized to participate 
in minting as the largest stakeholders. 

Combining these circumstances, we can conclude that the largest stakeholders will presumably run 
master-nodes, which will verify the entire blockchain and will be the most likely victims of fraud 
attempts. Under such assumptions, it seems logical to grant such players the authority to alert the 
network in the case of a fraud suspicion. Since there is still a small chance that even a major 
stakeholder may abuse his or her powers to harm arbitrary minters, an aggregate claim of three 
master-nodes is required for a full-scale alert. 

Suppose that Alice, Bob, Carol and Dave run stock exchanges. Malicious Malory captures a 
consensus supermajority in a shard and adds a fraudulent transaction to the shard-block. This 
transaction transfers funds to Malory’s account on Alice’s stock exchange. 

a) Alice does not run a master-node. 

Alice is careless enough not to run a master-node while dealing with large money flows. She 
accepts Malory’s fraudulent transaction and commits a counter off-chain asset to Malory. 

Bob runs a master-node and requests data from Malory, but Malory does not respond. Bob 
suspects Malory of fraud and sends alerts to other authorized fishermen nodes. 

Bob presumes that if Malory is an adversary, she may likely have tried to transfer funds to a 
stock exchange (possibly Alice’s). Even if Bob does not care about the safety of the system and 
the suspicious shard-block does not directly affect Bob’s funds, he is not interested in letting 
Alice profit off of this situation, since Alice is Bob’s competitor. Furthermore, causing economic 
damage to Alice is indirectly beneficial to Bob. 
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Carol and Dave, having come to the same conclusions, agree with Bob, and together they 
trigger an alert in the system. 

After the network ensures that Malory’s shard-block is fraudulent or unavailable, the shard-
block gets banned, as do Alice’s funds that were received from Malory. Malory gets away with 
the off-chain assets she received from Alice, and Alice is left with nothing. 

This is why Alice should either run a master-node herself or at least wait until an alert time 
window ends, assuming that, if no alert was triggered by the master-nodes, Malory’s shard-
block must be valid. Considering that Alice runs financial services, she is interested in 
providing a quick response to her clients and keeping herself safe, which is why she will likely 
prefer to run a master-node of her own. 

b) Alice runs a master-node but does not trigger an alert. 

Alice runs a master-node and finds out that Malory’s shard-block is unavailable, but she is too 
lazy to communicate with other master-nodes to trigger a global alert. She has already made 
her decision and does not accept the transaction from Malory, as she is suspicious that the 
shard-block is fraudulent. Since she has no incentive to trigger the alert and does not care 
about the safety of other users, she leaves the situation to the discretion of other participants. 

In the case that all master-nodes suddenly turn lazy, they may find themselves in a fork, 
because, not being alerted, the network accepts the fraudulent shard-block as valid. This is 
why it is not reasonable to avoid their fishermen’s responsibility if they count on keeping their 
data consistent with the entire network. 

This example shows that major stakeholders are naturally interested in verifying blocks for their own 
protection, and we do not need to apply additional incentives for fishermen. At the same time, they 
are not expected to abuse their powers to DDoS minters, as it makes no economic sense for them 
and they are most interested in keeping the system operating stably. Moreover, the identities of 
major actors will likely be publicly known, and direct malicious behavior may cause reputational 
losses as well as various off-chain punitive measures applied to such actors. 

Thereby, we circumvent the fisherman’s dilemma and create a solution that can operate in a 
rational environment. 

4) Master-nodes and decentralization 

The presence of a limited set of nodes with special authorities raises a question of centralization. At 
first glance, it may seem that our solution reduces the decentralization level of the system, but in 
practice it does not. 

Master-nodes cannot directly influence the state transition process but can only point out a possible 
fault. After a fisherman triggers an alert, the entire network investigates the situation and decides 
the fate of the specified shard-block. 

The only threat that a malicious master-node can pose is the possibility of increasing the traffic load 
for a minting node by triggering an arbitrary false data non-availability alert. To accomplish it, the 
adversary needs enough tokens to simultaneously have three of his or her nodes among the largest 
stakeholders. Considering that Dynemix’s design does not stimulate stakes aggregation (minting 
pools or similar aggregators), the adversary will likely need to obtain the required amount so that it 
is in his or her direct possession. Given the number of tokens needed to do this, it is hard to imagine 
a reason that a player of this magnitude would engage in such an activity. 

In the case that numerous abuses are detected in the system, it is possible to adjust the rules and 
tighten the alert requirements, but we believe that this measure would be excessive, and the 
problem is unlikely to emerge. 

In addition, the system can easily operate in the quilt mode even without a single master-node. The 
absence of master-nodes will lead to the following consequences: 
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a) Security will be reduced to the level of quilt-layer guarantees. 

If none of the authorized fishermen actually run a master-node and perform fishermen 
functions, the adversary may succeed with a shard takeover attack. 

The adversary, however, will not be able to distinguish whether any of the fishermen are 
actually performing data checks at any given time and adjust his or her strategy in advance. 
Given that any unsuccessful attempt will result in the loss of his or her Sybil accounts’ stakes , 
we may state that the mere implementation of the fishermen concept already provides 
additional security, although we cannot formally define the degree of the security boost. 

b) History will be unavailable. 

Although no one restricts nodes from keeping the full blockchain history, there is no point in 
full nodes keeping data longer than proposed by the protocol specification. 

As the system scales, the growth of storage overhead may become an obstacle to storing the 
entire blockchain, unless it is required for a particular purpose (for example, if the node is 
hosting a block explorer or a similar service). 

c) Data-availability guarantees will be reduced. 

If we assume that no one in the network accumulates shard-blocks, the transaction data will 
be obtainable only directly from the minters who built the block. Given the small number of 
participants in shard committees, there can be situations when the transaction data is 
temporarily unavailable. 

This will not affect the opportunity to access the balances of any accounts or to send and 
receive payments, which means that the system will still work fine and users’ funds will not be 
threatened. Without complete data, however, upon receiving funds users will not be able to 
identify the sender or amount of each transaction. 

Taking into account that master-nodes cannot influence the state transition process and that their 
presence is not strictly necessary for the system’s operation, we can state that the decentralization 
level reached in the quilt mode is not seriously affected by the presence of authorized master-
nodes. 

8. Overall security 

1) Opposite attack strategies for different layers 

The concept of authorized master-nodes brings with it a massive security boost due to the fact that 
breaking the master-node layer defense employs a totally different attack strategy than the one the 
adversary would need to execute to take over a shard consensus. 

a) A shard takeover strategy 

To approve a fraudulent shard-block, the adversary needs to control > 2

3
𝑚 members of a shard 

committee. To accomplish this the stake should be split among a large number of Sybil 
accounts. Given the bin-sorting of the global appointed minters’ committee among the 
shards, concentrating large stakes in a small number of Sybil accounts will not commonly 
allow the adversary to control more than 1–2 members of each shard committee, and the 
adversary will have to target different bins by placing stakes of different sizes. 

b) A master-nodes takeover strategy  

To breach the master-node-layer security, the adversary needs to control all except two 
authorized master-nodes. Given the 200 nodes limit, this would require controlling a stake of 
the size more than 198 times larger than the stake of the third largest stakeholder. This means 
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that the adversary needs to accumulate large stakes on a small number of accounts, which 
contradicts the shard-takeover strategy. 

Combining the number of tokens needed to control the required number of master-nodes and at 
the same time having the chance to take over a shard consensus, we may presume that this model 
provides sufficient security. We cannot formally define the amount of resources needed for a 
successful attack, as it depends highly on the actual stakes dispersion, but intuitively we can 
presume that security guarantees will likely be more than sufficient. 

The master-node security layer can be also breached by a successful DDoS attack. A 
simultaneous DDoS of 198 professional nodes, however, which can also engage several instances 
run in different locations, is a highly unlikely scenario. 

2) Merging two triangles 

By merging two layers with different architecture, we have managed to provide a multi-layer 
solution to the scalability trilemma without the need to sacrifice either security or decentralization. 

 

The quilt layer provides more decentralization, as it features much lower hardware and bandwidth 
requirements for nodes that operate on this layer. At the same time, security on this layer, though 
comparable to the security level of classic PoW blockchains, does not seem to be strong enough to 
satisfy our high standards. We may state that the quilt layer features high scalability and 
decentralization but lacks security. 

 

The blockchain layer, being not fully affected by sharding, lacks decentralization, for as the system 
scales up, the computation, storage and traffic overhead grow linearly. At the same time, it provides 
strong security, as the adversary would need a large number of resources to gain control of the 
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fishermen nodes. That is why, on the blockchain layer, decentralization is sacrificed for the sake of 
security. 

 

Being combined, two layers compensate for each other's shortcomings, at the same time keeping 
the advantages of each layer intact. The master-node layer provides additional security for the quilt 
layer but does not reduce the overall decentralization achieved. 

9. Achieved scalability and its further possible increase 

1) Efficiency of the current design 

The main purpose of sharding is to distribute the computation and communication overhead of 
peer nodes, allowing the system to process more transactions with the same hardware and 
bandwidth assumptions. 

If our sharding solution features the global state, which is updated on all nodes, it raises the 
question: how does it reduce the overhead if it still requires propagation of the same amount of data 
as classic non-sharded blockchains? 

To begin with, our solution allows communication overhead to be optimized for participating 
replicas and at the same time to provide more DoS resilience by significantly increasing the total 
number of participants. 

Another important matter is that our sharding scheme allows to solve several issues that emerge 
from other features of the protocol design. Namely, it helps with the proper implementation of 
Guess My Block game and the reward distribution scheme. 

Finally, the protocol was initially designed to operate in the quilt mode, which provides a significant 
performance boost, especially after the implementation of homomorphic encryption. At the same 
time, the system can be initiated with all nodes operating in the blockchain mode (hence being 
master-nodes), and smoothly transition to quilt and the subsequent encryption implementation 
without the need for significant architecture reconsideration. 

We find it dangerous to start directly in quilt mode, due to the safety issues described above. During 
its infancy, the system should operate in the blockchain mode, which provides stronger validity 
guarantees and features a higher adversarial threshold without engaging authorized fishermen 
master-nodes. After the potential for scalability in this mode is capped, the system can be switched 
to the quilt mode, which will further increase its scalability. Finally, when the appropriate balance 
encryption scheme is developed, it can be painlessly implemented into the system, which will 
already be operating in the quilt mode. 
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As the protocol allows subsequently switching between modes of operation, we can model the 
stages of development and estimate how the system will scale over time. 

In our tests and calculations, we modeled the computation and communication capabilities that 
most users can meet using affordable hardware. Our particular setup is as follows: 

 10-megabit bandwidth; 

 300 ms average latency; 

 Intel Core i5 7360U (a mid-range outdated laptop CPU); 

 Mid-range SSD. 

We assume that users should not experience a 100% hardware load, as it would be inconvenient, 
which is why we limit the use of the CPU to a single core. 

a) The blockchain mode (or the master-nodes mode) 

Dynemix blockchain is a chain of master-blocks that are assembled from a set of shard-blocks. 
Shard-blocks contain transactions themselves as long as a lot of metadata, which is why the 
complete master-blocks take significant time to be transmitted and validated. 

Given the described setup, the system will be able to process approximately 600 TPS using a 
single CPU core for computation. 

b) The quilt mode (or full nodes mode) without encryption 

This mode operates with the state of the entire system, which is updated by quilts – data 
structures that contain only a part of the information of the blockchain blocks. Full nodes 
obtain the current global state and then only apply quilts to execute state transitions. A quilt 
can be derived from the master-block, but the block cannot be restored from the quilt. 

Full nodes experience greatly reduced computation, traffic and storage overhead, as they do 
not need to process transactions (except while directly assembling shard-blocks). 

Given the setup described, the system will be able to process approximately 2,400 TPS using a 
single CPU core for computation. 

c) The quilt mode (or full nodes mode) with encryption 

Homomorphic encryption with ZK-proofs for each transaction will severely increase both 
computation and communication overhead, and the only option for providing a scalable 
solution is switching to the quilt mode. The problem is that, currently, we cannot predict the 
actual parameters, but we can assume that the more the overhead increases, the more 
efficient the quilt solution will become. 

We can clearly see that the system is capable of providing decent scalability even with very modest 
setup assumptions. 2,400 TPS is an enormous number, which can be capped only when the system 
gains worldwide popularity. We assume that by that time we will be able to significantly raise 
hardware and bandwidth assumptions, which means that Dynemix will be unlikely to suffer from 
insufficient scalability. 

Let us upgrade our setup to the level of current top-range consumer specs: 

 100-megabit bandwidth; 

 300 ms average latency; 

 Intel Core i7 9700 (a current gen top-middle desktop CPU); 

 Fast SSD. 
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In this case, we assume that the user can share the entire bandwidth and CPU power, taking into 
account that in 5–10 years the same level of performance will likely be achievable with only a partial 
load on average consumer-class hardware. Under such assumptions, performance will rise 
approximately to the following numbers: 

 4,000 TPS in the blockchain mode; 

 16,000 TPS in the quilt mode. 

Given the specified results, we believe that the current design will provide sufficient scalability at any 
stage of the system’s development, while at the same time keeping hardware requirements 
tolerable for most consumers around the world, thus maintaining the desired level of 
decentralization. 

For this reason, we did not go for a complete sharding scheme – we simply do not see the necessity 
to push scalability further, and we find it more reasonable to employ a more robust and efficient 
partial sharding design. 

We still cannot build any reliable precise assumptions about performance, however, in the case of 
the implementation of homomorphic encryption. We concede that an actual encryption scheme 
could require a much higher overhead than expected, and it may happen so that we will face the 
necessity of pushing scalability further by adjusting the design and accepting other tradeoffs. 

2) Splitting state into active and archive 

With the growth of the userbase, the storage overhead may become the first bottleneck of the 
system. A billion users’ states would weight about 120 GB raw and 540 GB in an encrypted form, 
which likely exceeds the amount of storage that an average non-professional minter is ready to 
share. Synchronizing a state of that size would also be a serious challenge for most users. 

One possible solution to reducing storage overhead is to shard and archive the state of inactive 
accounts. Considering the statistics, we may expect that many addresses may be inactive for long 
periods and that only a minority of users will issue transactions at least monthly. 

Under such assumptions, it is reasonable to split the system state into different layers, which will 
then be stored and accessed according to different rules: 

a) Active state 

This layer includes everything needed for block production (stakes, IMINs) and states of 
accounts that were active at least once within a specific period of time (e.g. last month). If an 
account doesn’t change its state in the determined time interval, its state converts to “archive.” 

b) Archive state 

After the account stays idle for a month, its state is archived and then deleted by most nodes. 
The archive is sharded and stored on a redundant number of nodes, from which it can be 
easily recovered whenever necessary. As user clients also store states along with cryptographic 
proofs of their validity, when an archived account issues a transaction, the client includes the 
state, and the transaction is processed without any additional delay. 

These measures can significantly lower the storage overhead at the cost of a slight increase in traffic 
overhead, which is overall an acceptable tradeoff. 

3) Implementing complete sharding (without global state) 

This is a more challenging goal. Though we could keep many elements of the current design, it 
would still require a serious architecture reconsideration, as new solutions for several emerging 
problems need to be developed. 

https://medium.com/panony/btc-on-chain-data-insights-daily-active-addresses-increased-by-40-for-6-months-and-78-whale-8fae4f576f4a
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Fortunately, certain features of the current design can significantly help build an appropriate 
sharding solution with isolated states. In particular, the Guess My Block game can reliably ensure 
that both parts of a cross-shard transaction will be processed instantly and simultaneously, which 
means that we can provide a solution to the train-and-hotel problem that will fit our finality latency 
standards: namely, we can use a two-phase consensus to finalize a cross-shard transaction. 

We will still have to accept certain tradeoffs, however, that will inevitably degrade some properties 
of the system. We find the current design almost perfectly balanced from the point of view of 
targeted properties and setting, which is why we consider complete sharding the last resort for the 
scalability issue. 

Furthermore, it is not currently clear whether we will need to push scalability this far and whether a 
complete sharding solution will actually provide a significant scalability boost that would be worth 
the concomitant tradeoffs. 

10. Partitioning and forking 

1) Partitioning and CAP theorem 

From the point of view of CAP theorem, Dynemix is consistency-focused. We can conditionally call it 
a CP system, but according to the initial notions of CAP theorem, it is more appropriate to call it “C 
and moderately P.” 

The problem is that Dynemix cannot fully tolerate arbitrary partitioning. As the system operates 
according to the weakly synchronous model, liveness holds only as long as a required threshold of 
participating replicas is allocated in the same partition. 

In the case that a node is not able to get enough responses from the other replicas by the end of the 
subslot, it assumes that it has been isolated in a partition and locks in the recovery mode, whereby it 
waits until a valid master-block is seen. Upon restoring connectivity and receiving the current 
master-block, the node restores consistency with the rest of the network and rejoins the protocol. 

It is easy to conclude that if the system splits into a number of partitions, none of which contain 

enough replicas to assemble at least a single shard-block and then reach a master consensus (3

5
𝑀), 

all replicas will enter the recovery mode and the protocol will stall. 

Given the assumed network topology of Dynemix, we consider this highly unlikely. A practical 
partitioning threat refers mostly to situations in which a small fraction of nodes get isolated from 
the major network segment, which should be handled fine by the Dynemix protocol. 

Nevertheless, what if this actually happens and the system stalls due to the violation of synchrony? 
We assume that this is an extraordinary situation, which indicates a global cataclysm. In this case, it 
is reasonable to let the system be recovered in manual mode after the consequences are overcome. 

We can theoretically propose an automatic fallback recovery algorithm, but the problem is that by 
doing so we will inevitably extend the communication model to asynchrony or partial synchrony, 
with all their respective consequences. We would likely no longer be able to guarantee either 
adaptive corruption tolerance even against a mildly adaptive adversary or sequential consistency, 
which seems like a heavy price to pay. 

We have chosen consistency over availability for the following reasons: 

a) We believe that consistency is preferable for a consumer-level payment system. 

If we assume that the system will be used by a general audience, we cannot go for availability 
and allow weak (eventual or probabilistic) consistency. This results in the possibility of forks 
and complicates the notion of finality (as we noted, fast finality is one of the crucial features we 
need to achieve). 
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Common users perceive a payment system as something solid and reliable. This means that if 
the transaction is processed, no rollback is expected to occur. If the user is isolated in a 
partition, it is obviously better not to provide him or her with an incorrect state and not to 
accept his or her transactions than to allow them to be rolled back after the system recovers. 

Availability may be an option for specific blockchains focused on professional use, when we 
assume that users understand the consequences of inconsistent system operation, but this is 
clearly not our case. 

b) Homomorphic encryption does not allow forks to be merged. 

If balances are not encrypted and the system suffers from partitioning, it is possible to adopt 
merging rules that are applied when the network recovers. Transactions from one fork can be 
relocated to the other fork (unless double spends occurred), and users will not suffer a rollback 
when the lesser chain is orphaned. If balances are encrypted but the system uses a UTXO 
model, relocation of transactions is also possible. 

A homomorphically encrypted account-based state, however, does not allow fork merging. 
The reason is that ZK-proofs become invalid if the state changes. This is why if a user receives 
funds in partition 𝐴, his or her transactions in partition 𝐵 will become invalid for partition 𝐴. 

2) Forks 

By being consistency-focused and featuring a BFT-style consensus model, Dynemix is designed to 
strongly maintain a linear blockchain structure, which means that no forks can occur in the system 
unless an attack is committed. 

All shard committees for block 𝐵𝑛 are formed according to the information included in block 𝐵𝑛−1. A 

master-block is considered valid if at least 3

5
𝑀 committee members voted for it. This means that two 

valid blocks of one height can appear only if a number of minters sign both of them. This cannot 
happen unintentionally, and it clearly indicates the malicious behavior of such minters. 

Since we can be sure that each fork appearing in the system signifies an attack, we can apply 
punitive measures to the participants in the alternative fork. 

Assume that chain 𝐴 is the main fork of the network that is minted by honest minters and that 
Malory is an adversary who wants to commit a double spend. To accomplish this, Malory issues 
transaction 𝑇𝑀 , which transfers her funds to a stock exchange. Minters include the transaction in 
block 𝐴𝑛+1 , after which Malory exchanges her funds into an off-chain asset. Now Malory wants the 
network to switch to an alternative chain in which 𝑇𝑀 never happened and her funds stayed in her 
account (or were transferred somewhere else). 

She chooses an arbitrary branching point, which obviously should occur before block 𝐴𝑛+1. Suppose 
she chooses block 𝐴𝑛 as the parent and starts alternative chain 𝑀 from height 𝑛 + 1. After she 
completes all the preparations, she reveals her fork to the network. Suppose it happens on height 
𝑛 + 3. Now all nodes in the network must decide which chain they are going to join. The decision is 
made according to the following rules: 
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a) Nodes that witnessed transition 𝐴𝑛  → 𝐴𝑛+1 will not buy the bait. 

All nodes that are constantly online and keep the record of the entire blockchain (at least the 
hashes of blocks) know that block 𝐴𝑛 was followed by block 𝐴𝑛+1. At the time block 𝐴𝑛+1 was 
propagated, block 𝑀𝑛+1 was not observed in the network and hence must have been revealed 
later, which is why the nodes consider chain 𝐴 valid and chain 𝑀 adversarial. They inspect the 
latter and slash the stakes of minters who participated in that chain (if any of them have not 
unstaked). 

b) Nodes that witnessed any block in chain 𝐴 since 𝐴𝑛+1 will not buy the bait either. 

If the node did not witness the transition but is aware of any block on chain 𝐴 between the 
branching point (height 𝑛 + 1) and the current block (height 𝑛 + 3), it comes to the same 
conclusions as in the previous case. For example, if the node is aware of block 𝐴𝑛+2 and did not 
see any alternative blocks at that height, it means that 𝐴 must be the valid chain. 

c) Newcomers or nodes that did not synchronize with the network since 𝐴𝑛 will have to 
choose a fork. 

If the node was last online before the branching point or if it simply has just joined the 
network, it cannot know which chain was minted secretly by the adversary and which one was 
built by honest minters. 

3) Chain selection for non-witnesses 

At this point, we address the problems of subjectivity and nothing at stake. As we stated in the 
chapter devoted to comparing PoW and PoS, PoW is considered objective, for any node can choose 
the correct fork without the need to trust third parties, while PoS is inherently vulnerable to 
posterior corruption and a newcomer may be unable to distinguish the adversarial chain from the 
honest chain relying on the protocol rules exclusively, which is why PoS protocols are subjective. 

We do not support this division, however, as we do not believe that overall objectivity is practically 
achievable with the help of any blockchain design. Despite the fact that Bitcoin may be objective on 
the protocol layer, in practice user–protocol interaction necessarily includes intermediate layers (e.g. 
client, operating system, hardware etc.), which cannot satisfy the same objectivity conditions. This is 
why we consider any blockchain implementation in practice subjective to the same extent. 

If we assume that a user can verify a Bitcoin blockchain only with the help of software and hence 
needs to trust the provided result and presume that the software was not corrupted, providing the 
current state of the blockchain along with the software does make it any more subjective. 

For this reason, the problem of chain selection for newcomers can be solved trivially – the hash of a 
recent master-block should be provided along with the client, or a set of trusted bootstrapping 
nodes should be predefined for initial synchronization. We do not believe that any more 
sophisticated solution is required, as subjectivity cannot be circumvented no matter how 
complicated an algorithm we propose, and we see absolutely nothing wrong with that. 

The only category left unaddressed so far is that of nodes that were last online before the branching 
point and did not witness any blocks above 𝑛 height. 

The main problem with proposing a secure algorithm for this case is nothing at stake. While the 
work applied to a block constructed according to PoW design cannot be transitioned to an 
alternative block of the same height, in PoS protocols the same stakes can be used to construct an 
arbitrary number of parallel forks at a near-zero cost, which makes them vulnerable to posterior 
corruption. A possible solution to the problem was described by Vitalik Buterin and denoted as a 
weakly subjective model. In short, the solution looks like this: 

 Adopt a slashing algorithm, which penalizes stakeholders who behave incorrectly (for 
example, vote for more than a single block at one height); 

https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
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 Lock stakes as security deposits for 𝑁 blocks to prevent stakeholders from reverting history 
starting from a branching point less than 𝑁 blocks deep without the threat of losing their 
stakes; 

 Set checkpoints at the height at which stakes are unlocked, beyond which no alternative forks 
are taken into consideration. 

This means that if the node was last online fewer than 𝑁 blocks ago, the blockchain keeps roughly 
the same level of security as PoW blockchains. If the node was unavailable for more than 𝑁 blocks, 
the protocol cannot guarantee secure chain selection for it anymore. 

According to the initial idea, 𝑁 should be set to cover a large time interval, possibly reaching months 
to be effective, which means that stakeholders have to freeze their deposits for a long time. 

Although this solution partly solves the nothing at stake problem (at least for 𝑁 range), we do not 
believe that such a design is optimal for Dynemix for the following reasons: 

a) Locking stakes for a long period severely deteriorates several properties of the system. 

The main argument against long-term deposits is a concomitant dramatic change in the 
quality and volume of the global stake pool. 

One very important achievement of the Dynemix design is the involvement of ordinary users 
in the support of the system. Not only did we manage to lower the hardware requirements for 
minting nodes to the level of consumer hardware, but we also built an economic model that 
does not create any obstacles to users’ becoming stakeholders. 

Unlike most blockchains, in which block constructing tends to be a more professional activity 
with a high participation threshold, Dynemix is designed to be a system in which an average 
user can participate on equal footing with professional block producers. This brings Dynemix 
much closer to being a true peer system and the embodiment of the initial ideas behind 
cryptocurrency technology. 

The ability to quickly unbond and spend a user’s funds is an essential feature that helps 
achieve this goal. If we deprive users of this opportunity, this will instantly rearrange the stake 
pool in the favor of professional participants. The decision to freeze funds for half a year 
requires serious consideration and is obviously not something an average user can easily 
afford. 

Moreover, this will also affect major stakeholders who provide financial services and need 
liquidity. If we allow a quick unbond, stock exchanges and similar actors can stake most of 
their reserve without any threat to their activities. Long-term deposits, however, can deprive 
them of the necessary liquidity. 

This shows that implementing long-term deposits will almost certainly decrease 
decentralization and security both for full nodes and master-nodes. This is an unacceptable 
tradeoff, especially considering a highly disputable positive effect of this solution. 

b) The proposed solution helps only a small fraction of users. 

The weak subjectivity model may be relevant to blockchains that allow forks (featuring a 
common prefix design and the longest chain rule), but Dynemix is strongly consistent, and no 
forks are supposed to occur (unless a very powerful adversary commits a forking attack). 

For this reason, a potential attack can affect only a small share of users who satisfy both of the 
following conditions: 

 They were last online before the branching point; 

 They have at least one of the adversary’s nodes in the bootstrapping list. 
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In the case of an attack, the model described can only provide more protection for this 
category and should not generate any notable boost to the entire system’s security, as most 
nodes will stay completely immune to attack attempts. 

Furthermore, the affected nodes will only be subjected to a delay caused by the necessity of 
choosing the correct chain. Considering that these nodes will presumably need some time to 
synchronize with the network in any case, this does not seem to be an outstanding 
achievement for the adversary. 

In addition, the weak subjectivity model provides no solution if the branching point occurred 
more than 𝑁 blocks into the history, which means that the adversary can simply prepare for 
the attack and commit it after 𝑁 passes. In this scenario, the attack will likely affect many fewer 
users than in the case of a more rushing attack, but at the scale of the entire system, the 
difference may be barely notable. 

Given the stated arguments, we see no reason to implement the proposed model in its initial form. 
Instead, we adapted the principles of the model to the design of Dynemix. 

The deposit lock period is set to two blocks. This allows users to quickly unstake and provide the 
necessary liquidity for all categories of minters. Such a short deposit period protects them only from 
double signing any data before each block is propagated and settled, since it provides just enough 
time to penalize Byzantine actors but does not solve the nothing at stake problem in terms of 
posterior corruption. 

If the node encounters two conflicting blocks at one height that descend from an arbitrary 
branching point in history, given that the node has not witnessed any blocks after the branching 
point, the following resolution algorithm is proposed: 

a) Figure out whether both forks are valid. 

The node finds a branching point and requests a set of IMIN transactions with cryptographic 
proofs from the common parent master-block (𝐴𝑛) and the signatures of the minters of the 
first divergent master-block (𝐴𝑛+1 and 𝑀𝑛+1) from each chain. According to IMIN transactions 
and the hash of 𝐴𝑛, the node establishes the shard committee’s designation for 𝑛 + 1 height. 
The node verifies that both 𝐴𝑛+1 and 𝑀𝑛+1 were built according to the rules: i.e. both were 
signed by the required threshold of minters. 

On this stage, the node needs to download only a small portion of data from three blocks, 
which is affordable for common users even after the system scales up (approximately less than 
5 MB of data for a 100 million userbase). 

If block 𝑀𝑛+1 does not meet the requirements, the decision is instantly made in favor of chain 
𝐴. If Malory has managed to obtain enough signatures to construct a valid 𝑀𝑛+1, however, the 
node proceeds to the next step. 

b) Figure out the preferences of trusted nodes. 

If Malory presented a valid fork, this already means that she has put a lot of effort into the 
attack, considering the number of minters’ signatures she has managed to obtain (or control 
initially). On that point it is reasonable to bring in subjectivity and to offer the user decide him- 
or herself. 

To help the user with the choice, the client investigates which fork is supported by nodes that 
are considered to be run by powerful actors who are unlikely to engage in fraud. This may 
include stock exchanges, developers, block explorers etc. This may also include nodes that 
gained a certain reputation from the point of view of the personal experience of the user’s 
node. There can be different approaches to the construction of such a list, and no particular 
rules are needed on the protocol level. 



77 

 

The information collected should be sufficient for the user to figure out which fork is 
legitimate. At the same time, this kind of research will not consume any noticeable amount of 
traffic and can be performed in a couple of seconds regardless of the current system load. 

Some users, however, may prefer investigating both chains more precisely. 

c) Download data from both chains and estimate which of them contains more voting power. 

If the user for some reason cannot make a decision in the previous step and wants to discover 
how much stakes each fork accumulates, he or she may download data from both chains and 
conduct research in the following order: 

 The node establishes the total stakes in the system and builds the list of stakeholders at 
height 𝑛 (the accuracy depends on the depth of the research). 

 The node downloads data from each chain block by block and discovers the votes of the 
stakeholders. Service transactions (i.e. stake, unstake and IMIN) refer to the parent block 
and thus are TaPoS-compatible. They cannot be replicated by the adversary without re-
signing, which is why whenever the node finds such a transaction issued by a 
stakeholder, it is considered a vote for a particular chain. If a stakeholder is found placing 
transactions in both forks, the node concludes that this account is compromised and 
does not count its votes. 

By the end of the investigation, the node will have the following information (the accuracy 
depends on the depth of the research of the stakes at height 𝑛 and the number of verified 
blocks from both concurrent chains): 

 the number of accounts that voted for each chain; 

 the number of stakes accumulated in each chain; 

 the current amount at stake (funds that were not unstaked and that Malory actually risks 
losing). 

This information will provide a comprehensive picture of the forks and allow the user to make 
a choice. The ratio of certain parameters may be also set for non-interactive selection. For 
example, if the client concludes that more than 99% of the stakes voted for chain 𝐴, this 
obviously must be the valid chain, as Malory is extremely unlikely to be able to collect that 
many stakeholders’ signatures, even if the branching point occurred far back in history, which 
means that the client is able to make a reliable choice without user involvement. 

The last step, however, is relevant only to the period when the system load is relatively low and the 
investigation will require a tolerable traffic overhead. If the system scales up to a 100 million 
userbase, downloading the complete data from both chains may seem unreasonable for the 
average user. If Malory sets a branching point a month deep and builds a chain up to the current 
height, the data required for the complete investigation will likely exceed a terabyte. 

For this reason, we believe that, given the properties of the Dynemix protocol, we should not 
necessarily concentrate on a formal approach to the chain selection rules. Subjective selection may 
be a preferable option for most users, who will likely prefer to make a choice according to the 
information on trusted players’ preferences rather than download and process terabytes of data. 

Bringing a bit more subjectivity to the table also favors security. If we apply a formal approach, 
Malory will know particular conditions that will allow her to succeed. Transitioning chain selection 
rules from the protocol layer to the client layer, however, makes Malory’s perspective uncertain. She 
cannot reliably predict whether a single user will fall for her trap, and, if someone does, whether she 
will be able to take advantage of it. Although there can be nothing at stake, at the same time there 
can be nothing in the guaranteed expected return. 
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11. Finality 

Earlier in this chapter, we addressed the issue of finality, stating that it should be achieved as quickly 
as possible (at worst, within 20 seconds after the transaction is issued). At the same time, we did not 
explain what finality exactly means in relation to Dynemix. 

The notion of finality differs for blockchain systems of different consensus design. 

In Bitcoin and other systems that feature probabilistic consistency, finality increases exponentially 
with each new block mined on top of the block that contains the transaction. The degree of relative 
finality can be considered individually depending mostly on the importance of the transaction to 
the recipient. If the transaction features low value, one may consider a couple of blocks sufficient. In 
the case of a valuable transaction, it may be reasonable to wait for 6–10 confirmations. 

In the case described, reaching finality is a prolonged procedure. It is a fundamental boundary of 
any system based on the common prefix design, which is why we initially rejected this architecture 
for Dynemix. 

In consistency-oriented blockchains with a BFT model of consensus, finality is reached after nodes 
achieve a consensus or other special events occur, and in many systems, it depends on the number 
of approved blocks on top to a much lesser or even zero extent. 

In Dynemix, we can outline the three main checkpoints of finality: 

a) Shard-block commitment (approximately 4–5 seconds after the transaction is received by a 
minter) 

After the members of a shard committee reach a Byzantine agreement, the shard-block may 
be considered finalized under the assumptions that both shard- and master BA 
supermajorities are honest and the system’s liveness is not breached. 

This means that the transaction may be reverted only in tree cases: 

 The system is under an attack that requires controlling the BA supermajority within the 
shard (a shard takeover attack); 

 The system is suffering an attack on liveness or partitioning due to a network 
malfunction. 

 The master consensus supermajority is corrupt and intends to ignore the shard-block. 

Since neither event is expected to occur under normal conditions, this checkpoint provides 
finality guarantees strong enough for most transactions, except ones of very high value. 

Since shard-blocks (or patches) are exchanged only among the minters of the current block, 
however, most users will not have access to them and hence will have to wait for the next 
checkpoint to get the confirmation. 

b) Master-block approval (approximately 8–9 seconds after the transaction is received by a 
minter) 

After a master consensus is reached, the master-block cannot be reverted, which means that, 
upon receiving the master-block, the user can consider the transaction finalized with only a 
negligible probability of reversal. 

If there is a fraudulent shard-block approval by the corrupted consensus supermajority, 
however, the shard-block that contains the transaction can be banned, and the transaction 
can be reverted, which means that in some cases users may prefer to wait until the final 
checkpoint is reached. 
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c) Block validation by master-nodes (approximately 18–19 seconds after the transaction is 
received by a minter) 

If the user deals with high value transfers, it is reasonable for him to run a master-node and 
verify shard-blocks himself. In this case, the transaction may be considered fully finalized when 
the user verifies the shard-block that contains the transaction and concludes that it has been 
assembled according to the rules of the protocol. 

If the user does not run a master-node, he or she should wait until the next block is 
committed. By that time, the previous block should be verified by the master-nodes, and in 
the case that no alarm was triggered, the block must be valid, and the node may consider it 
fully finalized. 

After the last checkpoint is reached, the transaction cannot be reverted unless a massive attack is 
committed that can fully breach all levels of the system’s security. Additional blocks minted on top 
of the block that contains the transaction do not grant any stronger finality guarantees. 

VI. The Liberdyne Messenger 

1. Decentralized architecture 

Liberdyne is a decentralized P2P messenger with an emphasis on security and privacy. 

Liberdyne uses the account base and transport protocols of the Dynemix blockchain system, which 
greatly improve the messenger’s capabilities. 

Liberdyne is designed to withstand a significant load created by a userbase of a size comparable to 
that of popular centralized solutions. 

1) Liberdyne and Dynemix blockchain 

Unlike the typical approach, we did not aim to use technology for the sake of technology. 
Blockchain is used only to the extent that helps build a better system and improve the user 
experience. The irony is that we cannot call Liberdyne a blockchain messenger, considering the 
actual degree of blockchain involvement in the messenger’s architecture. 

There are several existing blockchain messenger projects, but blockchain technology itself is not 
optimal for storing and transferring data of low value, such as ordinary correspondence. Any 
messenger that stores transferred data directly in the blockchain is a very niche product that cannot 
compete with conventional client-server apps from the point of view of efficiency and scalability. 

Liberdyne is closer to more common P2P messengers (e.g. Tox) in its design, but the Dynemix 
blockchain still plays an important role in providing a solution to several problems emerging from 
P2P architecture. 

a) Accounts 

Secure communication requires the ability to reliably identify interlocutors, which is why in a 
decentralized peering system, management of the account base can become a serious 
challenge. Blockchain technology offers an optimal solution providing secure decentralized 
consistent key storage, which is highly resistant to MITM attacks. 
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Convinience: low Security: high 

Security: average Convinience: high 

b) Rewards for system support 

When it comes to system support, most P2P systems rely on altruistic behavior by the 
participants, who share hardware resources for the sake of community. This model may work 
to a certain extent, but in the case of a significant hardware load, altruistic intentions may not 
suffice. Dynemix helps Liberdyne build a fair system of economic incentives, which ensures 
smooth operation. 

c) Dynemix wallet 

An embedded cryptowallet is a quite standard feature of any blockchain messenger and often 
the only reason a messenger is actually called as such. Liberdyne allows payments to be made 
from Dynemix accounts or unregistered key pairs, which can be added if the user wishes to 
engage multiple wallets. 

d) Transport protocols 

Liberdyne uses the low-level transport protocols of Dynemix. This helps build the mentioned 
reward distribution system with the help of blockchain transactions and also provides for 
traffic obfuscation for user-generated content, making meta-data analysis significantly more 
difficult. 

2. Accounts in Liberdyne 

Liberdyne employs Dynemix accounts for its operation. To create an account in Dynemix, a master 
key should be generated that is then secretly stored by the user and engaged to log in. The 
Dynemix protocol has no requirements for key-generation methods; the only thing that matters is 
format matching. 

There can be different approaches to key generation, however, which significantly affects the user 
experience. Since Liberdyne is a complete product, it should feature particular methods to meet the 
needs of most users. 

During the account-creation process, users will be offered two different methods of key generation, 
each of which will be more suitable for certain types of system usage. 

1) Random generation 

 

For users who will store significant amounts of dynes in the account or transfer important 
information 

If the user chooses this option, a master key is generated randomly. This approach makes the key 
uncrackable, but requires storing the key and entering it on each logon. Since a 256-bit randomly 
generated key is unmemorizable, users will have to engage some kind of a storage (from a simple 
sheet of paper to a special hardware wallet). Although a random generated key is immune to brute-
force attacks, the wrong choice of storage may compromise the key itself and cause the loss of the 
account. 

This method is standard for most blockchain systems, but since we are creating a product for mass 
audience, many common users may find this approach inconvenient. 

2) Password hashing 

 

For users who will store small numbers of dynes in their accounts or use the application for everyday 
communication 
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To improve the user experience, another approach will be offered – hashing a master key from a 
user-generated password. Though we will use a secure key derivation function (Argon2 or any other 
stronger solution that may be developed in future), this method is still vulnerable to brute-force 
attacks if the password set by the user is not strong enough. 

The positive side is that the user will be able to remember the password (or the passphrase) and 
interact with the system in a much more convenient way. Since this method is familiar to most 
users, we believe that it will prevail. 

3. Delivery to offline guys (DOG) 

P2P architecture raises a serious problem – delivery of content when direct P2P interaction is 
impossible. If the recipient is offline, the message cannot be delivered. The sender’s client may try to 
connect intermittently and deliver the message when the recipient reconnects to the system, but 
what if the sender himself goes offline? 

In centralized messengers, servers are used as delivery relays, so the message is stored on a server, 
which obviously never goes offline until the recipient connects to the network, and thus the 
problem is solved. In a P2P network, peers perform the relay functions, which is why such a solution 
will not work. 

To solve this problem, we implemented a special protocol of delivery to offline guys (or girls, if you 
prefer) – DOG. 

1) Delivery protocol 

 

If user 𝑈 tries to send a message to recipient 𝑅 but fails to connect to the node of 𝑅, he or she finds 
several DOG nodes (or simply dogs) and commits the delivery to them, thus forming a pack. 𝑈 
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informs each dog about all other members of the pack so that they will be able to maintain the size 
of the pack. 

If 𝑈 goes offline, the replicated messages will still be stored on the packs’ nodes, each of which will 
intermittently try to deliver the message and check whether the entire pack is still online. If one or 
more nodes of the pack goes offline, the remaining dogs will find substituting nodes, thus keeping 
the pack size constant. 

When 𝑅 finally connects to the network, one of the dogs delivers the message. The others will 
attempt the delivery as well, but 𝑅 will respond that he or she has already received the message. 

After all dogs get delivery confirmation, the pack is considered disbanded. 

It is worth noting that DOG is not strictly a Liberdyne feature but a low-level transport protocol of 
the Dynemix system, which means that any type of service data can be delivered via DOG if needed. 

2) Rewards for dogs 

Dogs will be rewarded with newly issued coins. This is a feature that makes Dynemix significantly 
different from any other blockchain system. While in other cryptocurrencies all issued coins are 
distributed among the block producers, Dynemix distributes rewards among nodes that perform 
different functions, thus creating an absolutely new economic framework. 

For a more detailed description of the role of the DOG reward system in the economy of Dynemix, 
please refer to the Economics chapter. 

Rewards will be distributed by minters as the result of pseudorandom spot checks. 

3) DOG as a solution to the reward distribution issue 

A very important feature of DOG is that, unlike all other system support functions in Dynemix, DOG 
can be performed by even light clients (mobile devices). It serves the following purposes: 

a) Removing load from full nodes 

Full nodes perform various functions in the context of Dynemix/Liberdyne support. 
Unfortunately, due to the hardware and bandwidth limitations, we can delegate almost none 
of them to light nodes. 

DOG, however, is a function that does not require powerful hardware or low latency. 
Considering that mobile devices will presumably form the majority of the Dynemix nodes, the 
load required by DOG will be distributed enough to significantly reduce the resource 
consumption of each dog. This also means that the load will not increase with the growth of 
the userbase, since the number of dogs will grow proportionally. 

b) Achieving greater reward distribution 

In the beginning of the white paper, we stated that one of our goals on the way to creation of a 
next-generation decentralized payment system was the following: 

 Newly issued coins should be distributed among as wide an audience 
as possible. 

The DOG reward system helps us achieve this goal. Since DOG is easily performed by any type 
of device, it fits the concept perfectly. If we make DOG rewards a large portion of the issued 
coins, this may allow the distribution of the issued dynes among almost all nodes of the 
network. 
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4. Secure anonymous tunneling across network 
(SATAN) 

Direct P2P connections between users cannot provide full anonymity. Even if registration does not 
require any personal user data and all transferred messages are end2end encrypted, it is still 
possible to acquire the IP address of the sender and the recipient of any message and keep a record 
of user interactions, which in itself provides a lot of information. 

This problem is also relevant for centralized messengers, since all connections are relayed through 
servers, which make it extremely easy for a person who has access to the servers to gather the 
information and use it for any purpose, including providing it to third parties. 

To ensure complete communication safety, we must apply a solution to hide the interaction 
between the users. 

To accomplish this, we have implemented a secure anonymous tunneling across the network 
(SATAN) protocol that allows users to send and receive messages through a chain of relays, thus 
completely hiding their IP addresses behind the relay nodes. Furthermore, the relay nodes cannot 
know for sure which particular node is the sender or the 
recipient of the message. 

The only fact that can be seen by a possible intruder is that 
the recipient’s user account received some sort of 
message from an unknown account. Essentially, SATAN 
uses the principles of onion routing. 

If the user wishes to hide all his activity, he may pay a fee 
to the system and turn on the SATAN protocol. 

When node 𝑁 run by user 𝑈 is connected to the network, it 
chooses two chains of 3–6 relay nodes for incoming and 
outgoing messages. 

1) Sending a message 

a) When user 𝑈 on node 𝑁 wants to send a message to 
recipient account 𝑅, he gets information about which 
node is associated with user 𝑅 from DHT. Say it is 
node 𝐶. 𝑈 chooses three relay nodes for an output 
chain (𝑋, 𝑌, 𝑍), sequentially encrypts the message, 
along with the metadata about the route, with the 
public keys of user 𝑅 and of nodes 𝐶, 𝑍, 𝑌, 𝑋, and 
sends the encrypted data to node 𝑋. 

b) 𝑋 receives the message and decrypts it with its 
private key. It sees that the message contains some 
encrypted data and instructions to send the data to 
node 𝑌, which it does. 

c) Nodes 𝑌 and 𝑍 do the same as 𝑋. 

d) 𝐶 receives the message from 𝑍 and decrypts it with 
its private key. It learns that this is a message for 
account 𝑅. Since the owner of the node has the 
private key of account 𝑅, he decrypts the message 
and reads it. 
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None of the relaying nodes knows which particular nodes and which user accounts are the sender 
or the recipient of the message. 

The owner of 𝑋 may suppose that node 𝑁 is the sender node; therefore, user 𝑈 is the sender of the 
message, but it may also be just a relaying node, like 𝑋 itself. 

The owner of 𝑍 may suppose that 𝐶 is the recipient, but it may also be just a relaying node, like 𝑍 
itself. 

Since nobody knows how many nodes 𝑈 has actually chosen as relays, even if the adversary runs all 
nodes in the chain (𝑋, 𝑌, 𝑍), he still cannot be sure that 𝑈 is the sender of the message. 

2) Receiving a message 

If user 𝑅, along with user U, is using SATAN, then after exiting 𝑈’s output chain, a message does not 
go directly to the node of 𝑅 but enters his input chain instead. 

In this case, 𝑅 puts into DHT the information that he can be found not on the node on which he 
actually is (𝑀) but on the first node of his input chain (𝐶). Then, using his output chain, user 𝑅 sends 
the following messages: 

a) He tells node 𝐶 that he can be found on 𝐵. 

b) He tells node 𝐵 that he can be found on 𝐴. 

c) He tells node 𝐴 that he can be found on 𝑀. 

The message travels through his input chain and is finally delivered to node 𝑀, where 𝑅 decrypts it 
with his private key. 

Relay nodes from 𝑅’s input chain know only that they are delivering some data to 𝑅, but they do not 
know the sender of the message or what node 𝑅 is actually on. Node 𝐴 may suppose that node 𝑀 is 
the recipient node, but it may also be just a relaying node, like 𝐴 itself. 

Therefore, with the help of the SATAN protocol, any user can stay fully anonymous regardless of 
whether his or her interlocutor also uses the SATAN protocol. 

3) Rewards for relays 

Since SATAN is a paid feature, relay nodes will be rewarded for their effort. 

Whenever a user wishes to enable SATAN, he or she sends an arbitrary number of dynes to the 
special system account. After minters add this transaction to a block, they update the user state in 
blockchain, setting a period during which the subscription will be activated. 

The special system account accumulates all fees, and each block a portion of the accumulated 
dynes is distributed by the minters as the result of pseudorandom spot checks in a manner similar 
to DOG reward distribution, but unlike DOG, SATAN rewards are not coin-based and are withdrawn 
from the account mentioned. 

5. Modes of operation: anonymous or social 

Liberdyne was conceived as the ultimate means of ensuring the right to freedom of speech and of 
unlocking the potential of decentralized technologies, and that is where its name originates. 

One of the key goals of the project is to provide the possibility of fully anonymous system usage and 
to secure personal data. The problem is that many features that consumers are used to are not 
compatible with such standards of security and privacy, so it is necessary to sacrifice one for the 
sake of the other. 
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At the same time, we understand that the majority of users do not care much about privacy and 
may be ready to trade it for better functionality. This means that we either have to compromise or 
offer two separate solutions – one for better privacy and one for a better user experience. 

We have chosen to follow the second path and develop an application that can function as a tool for 
secure and anonymous communication or a social platform, depending on the user’s needs. 

A very important feature is that users of both modes will stay in the same single ecosystem and will 
be able to interact without any difficulties. Anonymous users can communicate with socialized 
users without any threat to their privacy. 

As the features and preferences of these modes differ drastically, instead of just offering to let users 
tweak everything themselves, which can turn out to be a challenging task, Liberdyne will feature a 
simple switch that activates one of the modes. 

When a user runs the app for the first time, he or she is offered the choice of either anonymous 
mode or social mode. After the user makes a choice, the app is automatically configured, and the 
interface is painted with the corresponding color to let the user know which mode is active at any 
given time. 

1) Anonymous mode (blue) 

A dark blue interface will indicate that the app is running in anonymous mode, which provides 
maximum security and privacy. 

Once the user tries to access a feature that can threaten his or her anonymity, the app will show a 
warning. If the user proceeds with the feature, the color will switch to green, indicating that the user 
has quit anonymous mode. If the user wishes to return to anonymous mode, he or she can activate 
the switch from the preferences pane, which will instantly reconfigure the app. 

Certain features, however, can deanonymize the user irreversibly. For example, if the user binds a 
phone number with the account, this information may be instantly collected by malicious actors, 
and removing the binding will not help him obtain anonymity again. In case such risky features are 
activated, Liberdyne will block switching to the anonymous mode to show the user that he or she 
cannot be completely safe further on. 

Anonymous mode will feature the following specs: 

a) SATAN is always on. 

Considering that the SATAN protocol is a paid feature, anonymous mode will consume dynes, 
and users with zero balance will not be able to communicate with others in this mode. 
Transactions can still be issued free of charge, however (using the same chain of relays and 
keeping the user anonymous), so payment features will be available at any time. 

b) Features that require a streaming P2P connection are disabled. 

This applies to features that require data streaming, such as voice and video calls or any other 
features of this type that can be implemented in the future. Using relays to retranslate such 
types of data does not make sense, since the resulting delays may turn these features 
unusable. 

c) System support except relaying is disabled. 

System support functions require low latency, a good internet connection and stable transport 
routes. Providing system support while using a chain of random relays is technically almost 
impossible. In addition, it will put an unreasonably excessive load on relay nodes. 

Performing relay functions in this mode, however, is not only acceptable but also enhances 
anonymity, as it creates additional noise in the user's traffic. Besides, turning the relay 
functions off makes the user more vulnerable to certain deanonymizing attacks, which is why 
performing relay functions in this mode is recommended. 
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d) Binding a phone number to the account is disabled. 

Phone-number binding is a feature that poses the highest threat to anonymity. We actually do 
not like the idea of implementing this feature at all, but we understand that many users would 
feel uncomfortable without it, and rejecting this feature can greatly reduce the potential of 
Liberdyne's distribution. 

2) Social mode (green) 

A green interface will indicate that the app is running in social mode, which provides maximum 
functionality. 

Social mode is designed to provide the level of user experience close to that of existing centralized 
solutions. Though it does not allow the full use of the potential of decentralized technologies, if we 
count on the mass adoption of Liberdyne and Dynemix, it will be necessary to offer familiar 
experience for the general audience. 

Using Liberdyne in social mode does not provide the same level of privacy as in anonymous mode, 
but it may still seem sufficient for most users. All transferred data is end2end encrypted, and traffic 
obfuscation methods are applied in both modes, which means that going social does not make a 
user highly vulnerable to data analysis attempts, although metadata collection becomes less 
resource-demanding. 

In addition, if the user performs relay functions, it creates a lot of traffic noise, making it extremely 
hard to analyze his or her connections. Finally, since Liberdyne employ standard Dynemix transport 
protocols, service data flows, which are hardly distinguishable from user-generated content 
transmissions, also increase privacy in the same manner. 

6. System support tweaking 

Liberdyne will be the default client for a Dynemix node and will include everything required to use 
the system and perform the full node functions. No special minting software or wallets will be 
needed (although third-party developers may come up with all kinds of specific software for 
different purposes). 

Liberdyne versions for mobile devices (Android, iOS) will fully support only one service function – 
DOG – and may have limited support for relaying in the case of meeting technical requirements, 
while desktop versions will support the full capabilities of the system, including: 

 Minting; 

 Relaying; 

 DOG; 

 DCS. 

This approach allows the improvement of the user experience and the creation of an interesting 
marketing concept. 

According to the standard approach, which is used in most cryptocurrencies, the user should 
download a light client (a wallet) if he wishes to use the system only for payments, and a full node 
client if he wishes to participate in system support. 

Liberdyne, on the other hand, is a complete solution in itself. The user does not need to think of 
choices – he or she just downloads the product and starts using it and everything will be set up 
automatically according to the user’s hardware capabilities.  

At a first glance this does not seem to be much of a deal, but from the user's point of view the 
system starts to look totally different – it looks as if the messenger is paying users simply for using it. 
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The app will be configured so that users will not feel any significant inconvenience and at the same 
time, they will receive rewards for background system support. This may serve as a powerful 
marketing feature that will help us attract audience. 

For a more detailed description of our marketing strategy and the role of rewards for system 
support in it, please refer to the Marketing chapter. 

We will enable the support functions to be tweaked through Liberdyne’s preferences. If the user 
wishes to share more resources to earn more rewards, he will be able to simply drag the slider and 
the app will be instantly reconfigured. It is especially convenient for mobile clients since the user will 
be able to precisely specify the amount of traffic and battery life that he is ready to share. 

The user will be also able to prioritize certain functions or disable those in which he or she is not 
interested. If the user engages in minting, the app will automatically stop all other activities during 
the block-creation process to ensure its smooth operation. 

7. Centralized services 

Despite our goal to create a completely decentralized system, there are certain services that have a 
centralized nature and cannot be decentralized. 

Since those services are not crucial for the system and do not affect the security and privacy of those 
who do not use them, we decided to implement them to improve the user experience. 

1) Verified namespace 

To verify accounts, a centralized trusted authority is needed, because verification requires 
establishing off-chain facts (like ownership of an account by a specific individual or legal entity). 

In the early stages, this service will be administrated by the developers, but later we may consider 
transferring these authorities to a specially registered non-profit organization. 

2) Phone number binding 

Phone number verification requires the confirmation of ownership of the phone number by the 
account holder. Keeping the entire phone number base in the public domain is also not a good idea, 
which is why a centralized solution is required. 

We do not like the idea of implementing this service since it can irreversibly deanonymize any user, 
but at the same time, we understand that many people are already used to such functionality and 
we must take into account the interests of the majority. 

8. Decentralized cloud storage (DCS) 

Certain functions of the messenger will require some sort of external storage of the user’s data. 
Since we are making a decentralized system, we should not fully rely on third-party centralized 
solutions, and that is why a built-in decentralized storage protocol is required. 

DCS will be able to provide users with confidence that their sensitive data is stored persistently and 
that access to the data cannot be arbitrarily restricted. 

Liberdyne requires external storage for the following types of data: 

a) Contact lists 

Centralized messengers either store user contact lists on servers (Telegram) or use contacts 
stored on the user device (WhatsApp and others), which in turn are backed up in the clouds of 
OS developers and can be restored from user’s Google/Apple account. 



88 

 

Keeping such a type of information in blockchain is not a good idea, since it will greatly 
increase the weight of the account states, which is why we can either offer users the ability to 
employ third-party centralized clouds or use the DCS solution. 

b) Generated content backup 

Centralized messengers either store user-generated content (messages, files, pictures etc.) on 
servers (Telegram) or use third-party cloud storage (WhatsApp and others). 

Since dialogs may also be important to users, we should provide secure storage, which can 
also be achieved by keeping backups in DCS or third-party clouds. 

The Dynemix DCS protocol is still in development. More details about the protocol will be 
provided when ready. 

VII. Economics of Dynemix 
The economics section is being revised and will be available later as a separate paper. 

VIII. Decentralization 

1. Understanding decentralization 

Decentralization is the main idea behind cryptocurrency and the very reason for blockchain 
technology’s existence. Despite this fact, there is no established definition of the term, and the very 
notion of decentralization in terms of the cryptocurrency industry is still a matter of lively debate, 
with no clearly defined approaches having been developed. 

All this has led to heavy abuse of the term by developers, who started to claim they had reached 
decentralization only due to the fact that their systems were maintained by more than one node or 
due to the mere replication of databases. 

Since we mentioned decentralization as one of the fundamental properties we seek to achieve, we 
should cover our comprehension of the subject and explain what exactly we are striving for. 

We are going to take a more practical approach and will not conduct research to describe 
decentralization as a whole. Instead, we will concentrate on the meaning of decentralization with 
regard to blockchain technology. 

We are aware that we are discussing a controversial matter and we do not claim to be establishing 
the absolute truth but rather to share our own view, whether it is supported by the community or 
not. 

The distinctive feature of our approach is that it is based on social factors more than on technical 
ones. We have observed many studies that have tried to understand decentralization exclusively 
with the help of a computer science framework, but we believe that decentralization is a social 
phenomenon that cannot be efficiently defined only with technical terms. 
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Though the idea of developing a sort of a decentralization equation, which will allow us to input a 
set of variables and calculate the precise level of decentralization, looks tempting, we do not find it 
possible for the reasons stated. 

Let us get to the point and try to define what exactly a decentralized blockchain system is. 

A decentralized blockchain system is a blockchain system designed to deprive a single 
individual or a coordinated group of individuals of the opportunity to affect the system’s 
operation at their discretion. 

It is worth mentioning that, though we are speaking about blockchain, most of the further 
statements can also be applied to DAG-based cryptocurrency platforms and any other possible 
types of DLT systems. 

This definition is vague, but this is a consequence of the fact that the border between centralized 
and decentralized is very conditional. Let us investigate the matter in detail and try to clarify the 
definition as well as develop an approach that could allow a practical assessment of the 
decentralization level. 

1) “Individual” 

Problems begin to emerge directly from the basic terms to which we refer in our definition. Any 
blockchain ID (account, public key etc.) can be controlled, either by a person who acts on his or her 
own behalf or by a person who acts on behalf of some incorporation. From the point of view of the 
entire system, it is impossible to distinguish who actually is hiding behind any particular ID. 

On the other hand, a single individual can create multiple IDs within one blockchain, and again, the 
protocol rules cannot be designed to reliably detect such behavior. 

That is why when we talk about a blockchain user or a node, we should keep in mind that it can 
represent an incalculable multitude of individuals or on the contrary be just one of many 
representations of a single individual. It is impossible to settle this issue in a permissionless 
pseudonymous distributed system, so we can only accept it a fact. 

For these reasons, power in DLT systems is not distributed evenly among a set of entities but 
derived from the resource assigned to each entity. Despite the fact that voting is carried out 
according to the amount of resources, which means that a single entity may gain more voting 
power than an arbitrarily large group of opposing entities, this concept is designed to prevent the 
concentration of voting power in the hands of a single individual or a coordinated group of 
individuals by being based on the assumption that the required number of resources is high 
enough to be unlikely to be concentrated in one set of hands. 

2) “Opportunity to affect” 

Ideal decentralization implies the impossibility of decision-making by a coordinated group. The 
problem is that there is always a group (larger or smaller) that makes decisions, and, theoretically, 
any group can start acting in a coordinated manner. This means that no blockchain system can be 
absolutely decentralized and we cannot apply a simple binary approach. Each system can only be 
placed somewhere on the scale between more decentralized and more centralized. 

This is also the point that makes the definition indistinct. It is hard to define a particular set of 
conditions under which such an opportunity emerges, especially given the variety of current 
blockchain designs and the unclear possible vectors of future development. 

We can conditionally outline two main factors that define the presence of the opportunity: 

 Quantitative. A number of entities or resources is required to produce an effect on the system. 
The system that can be influenced by 10 actors is obviously more centralized than the system 
that can be influenced by 1000 actors; it is hard, however, to define the exact threshold. 
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 Qualitative. An image of an average actor. When Bitcoin blockchain was launched, Satoshi 
expected the network to be supported by common users who perform PoW computations 
with CPUs, thus providing the required protection. During its infancy, an image of an average 
Bitcoin miner generally matched expectations. With the appearance of ASICs and the growth 
of popularity, however, mining turned into a purely professional commercial activity, 
significantly transforming the portrayal of an average miner. 

3) “System operation” 

This term consists of several elements of the system and a set of properties that define these 
elements. Considering current blockchain implementations, we can propose the following 
classification: 

 A state transition. A transition from state 𝐴 to state 𝐵 by agreeing on an input value (a set of 
transactions) and running a predefined function that generates an output (commonly in the 
form of a block) accepted by the participants of the network. The affected properties of state 
transition are safety (can be decomposed into consistency and validity) and liveness; 
censorship resilience (or fairness) should also be considered. 

 Data storage. The main property is availability, which is secured by the redundant replication 
of the database. 

 Development. How the protocol is administrated and updated. From the point of view of 
decentralization, the degree of influence on decisions that affect the rules of the protocol 
should be assessed. 

We would say that, speaking of the overall decentralization level of a blockchain system, 
decentralization of the state transition process seems to be the fundamental concept-defining 
matter, while decentralized storage is an auxiliary matter. 

With regard to decentralized development, we should state that this is the point where things 
become really complicated. While conceptually it seems that we should tend to decentralize the 
development process as much as possible to fully achieve the overall decentralization, in practice it 
is not that simple. 

4) “Designed to” 

There can be two approaches to the continuity of the decentralization level of a given system. 

 According to the first approach, the decentralization level is a fluid property that may vary 
depending on how the set of the system’s properties changes over time. 

If we apply such an approach to Bitcoin, we may conclude that it was more decentralized at 
the start and became more centralized after the emergence of mining pools. 

 We support another approach, according to which the decentralization level is constant and 
defined by the architecture (unless it changes) and the initial state, but not the actual state at 
any given time. What is important is not how much the system is decentralized at the 
moment, but how centralized it can theoretically become due to the protocol rules or other 
factors. 

Returning to the example of Bitcoin, we may state that according to our approach its 
decentralization level on the start was the same as now, despite the fact that mining pools did 
not exist at the time, but considering that their emergence could be predicted. 

Following the first approach can quickly become a situation of walking on thin ice if we treat the 
system as a decentralized one, while it can predictably turn completely centralized in the blink of an 
eye. 

But the second approach is not flawless, either. There can be certain barely predictable conditions 
that can appear unexpectedly and change the attitude to the decentralization level. 
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In addition, in most cases our approach cannot be directly applied to the infancy stage, as 
blockchains are generally initiated by developers, which often have all the power concentrated in 
their hands for a short time, until at some point the power is distributed among the participants. 
Such an approach does not necessarily indicate centralization, as long as the power transition 
procedure does not last unreasonably long. 

2. The difference between decentralized and 
distributed 

We came across several approaches that refer to decentralization as the distribution of a blockchain 
(as a database). This may come from the fact that blockchain systems are basically defined as 
distributed state machines. The problem is that the terms “decentralized” and “distributed” are used 
in different contexts and sometimes even interchangeably. 

We consider decentralized to be a degree of distributed. 

We suppose that any distributed system becomes decentralized only after it reaches a certain state 
of distribution that allows the achievement of the properties specified in the definition. We may 
state that all decentralized systems are distributed, but not all distributed systems are decentralized. 

Let us explain what we mean in the example of the above-mentioned database distribution. The 
general purpose of database distribution itself is to provide fault tolerance, high availability and a 
decrease in access latency. In relation to blockchain, the first two features seem to be the priority 
ones. Indeed, being distributed, a blockchain becomes resistant to faults, data loss and 
unauthorized censorship attempts. These are useful features, but are they the main idea behind the 
blockchain concept? 

Presumably, Satoshi created Bitcoin in opposition to traditional payment systems, which also 
feature database and processing distribution. So, why do we call VisaNet centralized and Bitcoin 
decentralized? 

The main issue of conventional payment infrastructure is that all vital actions, including currency 
emission, transaction approval, compulsory withdrawal of funds, provision of access to the system 
etc. are within the competence of appointed entities. These entities are often suspected of abuse of 
their powers in the pursuit of the interests of minority elite groups. Distributed technologies that are 
used in conventional payment systems do not help solve these issues, but this is due to the fact that 
they were not originally meant to solve these issues – they were implemented for different purposes. 

The Nakamoto consensus protocol was invented in an attempt to create a payment system in which 
no entity or group was capable of making vital decisions, and this was the nervus rerum. This means 
that, with regard to blockchain technology, distribution starts to serve a specific primary goal, which 
is why we need a special approach to our understanding of decentralization. 

For this reason, we believe that decentralization cannot be defined through the mere distribution of 
the database or another single component. We need a certain set of distributed components, which 
are distributed to a certain degree, to ensure the particular behavior of participants and achieve the 
stated goals to call a system truly decentralized. 

3. Decentralized state change 

Blockchain systems are accessed via special entities that represent users or user groups. Commonly, 
a cryptographic key pair is used for this purpose, whereas a public key is a basic entity that identifies 
a user. 

Such an entity being an abstraction does not allow the quantitative factor of the desired level of 
decentralization with regard to state transition to be determined: in other words, we cannot 
measure the decentralization level of a blockchain system based on the number of entities needed 
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to make decisions, because, for the reasons mentioned above, “number of entities” has no practical 
meaning. 

At the same time, we cannot simply substitute the abstract term “entity” for the more practical term 
“individual,” since it is impossible to collate the number of entities against the number of individuals 
behind such entities in a permissionless, pseudonymous blockchain system. That is why we need to 
add an additional property that can allow quantitative assessment. 

To accomplish this task, it was proposed to use the number of resources in possession as a 
quantitative factor of the decision-making process. 

The main idea behind this approach was to try to ensure that no single individual or coordinated 
group of individuals could obtain enough resources to make decisions on their own. The more 
resources are needed to change the system state and the harder it is to obtain this number of 
resources, the more decentralized the system theoretically is. 

To date, we have two types of bounded resources that are commonly used for this purpose: 

 Computing power. The resource that is counted in PoW protocols. The level of 
decentralization can be measured according to the hashrate of the hardware. 

 Units of the system. The resource that is counted in PoS protocols. The level of 
decentralization can be measured according to the number of coins in possession. 

There have been several other proposals of resources to count, but none of those concepts has 
received any significant support to date. 

There are also concepts involving reputational factors, but they are mostly used as an auxiliary 
coefficient applied to the number of resources in the possession of the user. Although it is 
technically possible to build a system based solely on reputational voting factor, the safety of such a 
system is highly questionable, and the concept requires additional research. To a certain extent, 
delegated PoS may be also considered a reputation-based design – although voting for block 
producers employs resources, the only thing that is actually at stake is reputation. For now, a 
resource-based approach seems to be the only sufficiently Sybil-proof design. 

The safety guarantees of blockchain protocols are based on the assumption of the majority 
(supermajority) of voting power controlled by the nodes that behave properly. 

Liveness guarantees are not necessarily based on the number of resources in the possession of 
honest nodes, as they are relevant only to BFT-based design, but it should be also taken into 
consideration. 

To assess the decentralization level, the following parameters should be clarified: 

a) The number of resources required to influence a state transition. 

Both PoW and PoS designs assume certain thresholds of voting power that allow the state 
transition process to be influenced (by violating safety, liveness or fairness or by affecting the 
system another way). Generally, we may state that, due to the fundamental upper and lower 
boundaries, regardless of the particular consensus design ,in various ways the system 

operation can be affected by actors who control from 1

3
 to 2

3
 of the voting power (although 

there are few exceptions). 

There can be, however, certain scenarios of possible selfish behavior that involve a lesser 
amount of the resources (e.g. selfish mining in PoW-based protocols, forcing a transition from 
the fast to the slow execution path in hybrid PoS protocols etc.), which should also be taken 
into consideration. 

Although the relative share of resources required for decision-making is more or less equal in 
most designs, the proportion of the total resource-backed pool of decision influencers in 
relation to the total value of the system may vary significantly. The total value of the system’s 
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circulating supply correlates with the possible expected return from the selfish behavior of 
rational players, which is why the notion of a consensus majority or supermajority may have a 
completely different meaning in practice. This issue should also be considered. 

b) How resources are acquired. 

Safety and liveness depend on the chance of one actor’s or a closely related group of actors’ 
obtaining the required amount of the resources. This includes both the protocol rules and the 
method of initial token distribution (for PoS systems). The protocol rules define how much of 
the resources (in computing power or stakes) is needed to make a decision and how such 
resources can be gained by participants. The initial token distribution procedure determines 
the degree of token distribution or, in other words, the possibility of the minority’s controlling 
the majority of stakes right from the system’s start. 

The matter of token distribution is as important as the protocol rules. There are numerous so-
called “decentralized platforms” that have their tokens distributed via private sale among a 
small number of participants. Other developers leave themselves a huge share that allows 
them to manipulate consensus. Some developers even do both. Although technically such 
platforms may seem to provide decentralization at the protocol level, in practice all decisions 
can be made by a small predefined group of initial token holders, which makes such systems 
completely centralized. 

c) How low the entry threshold is for block producers. 

The more individuals involved in the process, the harder it is to make such a process 
organized. With regard to blockchain systems, this means that the more people involved in 
the block production process, the less likely they are to unite in a group and start acting in a 
coordinated manner in pursuit of common interests that are contrary to the common 
interests of the entire community. 

To achieve these conditions, it is crucial to lower the hardware and bandwidth requirements 
as much as possible. The perfect result is the opportunity to run a state transition on desktop-
class hardware with average bandwidth, even with a significant transaction flow (assuming a 
PoS design, of course). 

Higher requirements lead to the professionalization of block production, which not only 
reduces the number of participants, but also affects the quality – when block production turns 
into a professional activity, producers, who begin to pursue purely commercial purposes, are 
more likely to form cartels. On the other hand, when the process is executed by common 
people and no significant investment is needed, altruistic behavior can prevail and 
coordinated adversarial strategies become harder to execute. Though we cannot rely 
exclusively on altruistic behavior and the system should also be designed to be safe in the case 
of the predominance of rational players, increasing the number of possible altruistic players 
can greatly benefit the system’s decentralization beyond the assumptions of game theory. 

This is why keeping the block production process available to common people is a critical task 
on the way to creating a decentralized blockchain system. 

There can also be other obstacles to participation in the block production process apart from 
hardware and bandwidth requirements. The most common example is the stake size in PoS 
systems. If we set the minimal stake to a level equal to one million USD, this will assuredly 
exclude common people from minting regardless of the hardware requirements. 

4. Decentralized data storage 

Decentralization of the database is achieved through redundant replication and geographical 
distribution. 

We do not suppose that the level of database distribution should be considered a measurement of 
the level of overall decentralization of the system, because it always follows the distribution of the 
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state transition process. Block-producing nodes must always store information, allowing at least the 
establishment of the current system state. Otherwise, replicated system state transition is 
unachievable. 

Given this fact, we can proclaim that crucial data distribution is achieved together with 
decentralization of the state transition since the current state of the system is required to 
participate in the procedure. Storing such a state on external nodes makes no sense from the point 
of view of time and traffic optimization; therefore, we have never come across a blockchain system 
design that separates state transition from state storage. We should note, however, that a 
sophisticated scheme can be envisioned in which the collation of the state transition output is 
separated from the state storage, and we cannot reliably claim that our statement is fundamentally 
irrefutable. 

At the same time, this does not work the other way around. Data storage distribution alone does not 
necessarily lead to the decentralization of the state changing procedure. Otherwise, we could 
conclude that MasterCard’s Banknet is a decentralized platform since its transactions database is 
replicated. This means that the level of database distribution does not help determine the level of 
decentralization of the system. 

In PoW-based systems, however, overall data availability is not bounded to state transition, as the 
nodes that keep the record of the blockchain do not necessarily engage in mining. For this reason, 
we may asses the following additional factor: 

a) The hardware and bandwidth requirements to maintain the database. 

The less onerous the requirements are, the more instances of the database that can be 
expected to be available simultaneously. This question strongly correlates with the question 
from the previous section concerning the requirements to run a block-producing node, and, in 
most cases, investigating the latter is sufficient. 

5. Decentralized development 

There can be two different approaches to the method of platform development after release. Let us 
explore each using the example of the two most popular blockchain platforms to date. 

1) Development by community 

This is the method undertaken by Bitcoin. Shortly after Bitcoin’s release, its creator, Satoshi 
Nakamoto, disappeared, and since then the platform’s development (at least its main fork) has been 
carried out by the Bitcoin Core team – a group of independent developers who did not participate in 
the Bitcoin protocol or the software’s initial creation. 

What advantages and disadvantages of this approach have been revealed? 

a) More decentralization is expected 

Since, theoretically, there is no central authority, which can have a huge effect on consensus, 
such an approach looks more decentralized, and in this way, it better fits the ideas behind 
cryptocurrencies. 

b) The decision-making process is complicated 

At the same time, the absence of any central authority creates a problem – it is much harder to 
adopt decisions seriously affecting the platform’s architecture. From the social point of view, a 
community usually acts inertly and passively. If we rely on a voting process, it may take a lot of 
time to approve any decision. 
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c) High probability of a fork appearance 

Another problem is that, without a central authority, all decisions will be criticized, and if the 
division of opinion is high enough, then it will lead to the creation of a fork. We already have 
Bitcoin (the parent fork), Bitcoin Cash (which has also split into two independent forks), Bitcoin 
Gold, Bitcoin Diamond, Bitcoin Private and Bitcoin Interest, as well as lesser forks. On the other 
hand, Ethereum, which is still supported by its creators, has only one notable side fork – 
Ethereum Classic. 

d) The development process eventually becomes centralized 

Although, theoretically, such an approach should provide more decentralization, in practice 
the development process cannot be carried out in a decentralized manner. Even if we 
managed to involve a significant number of contributors, there must be a leader who will put 
it all together. Therefore, in an attempt to avoid chaos, we will inevitably end up with a central 
authority. 

Another obstacle to reaching the decentralization of the development process is the 
requirement that the participants have high competence, which results in a high entry 
threshold. 

To become a miner of Bitcoin, one will theoretically need at least one simple ASIC, an internet 
connection and a power socket – things that many people can afford. Considering that 
configuring mining software is a feasible task even for a person with basic knowledge, we can 
conclude that prominent mining decentralization is achievable (we are not taking into 
account the cost optimization issues here, though). 

An average Joe cannot become a blockchain developer, however. It takes a lot of knowledge 
and experience in the innovative technology to be able to join the development process, and 
this is something that only a few possess. 

These factors lead to the conclusion that decentralized development is nothing more than a 
utopia. 

Indeed, if we imagine that the development process is carried out by thousands of people, we 
will see no way of making it organized and effective without an appointed leader or group of 
leaders. Otherwise, the development process will turn into a tug-of-war, which will end up with 
a few winners occupying the podium anyway. 

Due to human nature, such leaders may eventually start pursuing their own interests, which 
will lead to a fairly predictable outcome. 

If we look at the current state of Bitcoin, we can see that, though the problem of increasing 
block size has been being widely discussed for many years, the Bitcoin Core developers have 
maintained the size as it is, as determined by Satoshi before quitting. This has raised a lot of 
negative judgment toward the developers. Some users accuse them of pursuing their own 
interests while ignoring the community’s interests. Such judgments are motivated by the 
alleged developer’s strong connections with major mining pools and mining hardware 
manufacturers – since a smaller block size creates competition among the transaction issuers, 
which increases transaction fees, it is more beneficial for miners to keep the block size intact. 

The developers insisted on implementing SegWit instead of a larger block size, which helped a 
bit, but did not change the situation dramatically. 

If Satoshi was still around, would the situation be the same? Supposedly, he considered the 
increase in the block size’s a method to scale the system, and most likely he would have 
supported it. Of course, this does not mean that Satoshi’s presence would help the community 
win the war against miners, had they opposed the decision to increase the block size, but at 
least it could have given the community a chance. 
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Meanwhile, the “decentralized” development has led to a situation in which the interests of 
mining pools are put above the interests of the entire community. 

Another fascinating event in the development of Bitcoin took place in September 2018, when 
several developers received information about a serious bug that could allow a DOS attack, 
and – what is more important – a possible attacker could issue new bitcoins by claiming the 
double-spent value. 

The developers issued a patch immediately, but what is most interesting is that only the 
information about the DOS attack vulnerability was disclosed, not information about the 
vulnerability to inflation (for security purposes). The latter was disclosed only after most miners 
had moved to the new version and the threat had been eliminated. Though we should not 
criticize the developers for behaving this way, since they obviously acted for the sake of the 
whole community, this situation shows us that a small coordinated group of developers can 
easily force the community to instantly accept any undocumented features, which does not 
coincide with the logic of decentralization. 

This leads to the conclusion that following the path of development by the community 
eventually makes the process centralized regardless of the initial intentions. 

2) Development by creator 

In the method undertaken by Ethereum, Vitalik Buterin and his team have been developing the 
platform right from the start. 

a) Faster platform development 

As we can see now, the presence of an authority can lead the community in a certain direction, 
which has a positive effect on the pace of the platform’s development. Ethereum has gone 
through many major technological changes, including modification of the consensus protocol. 
There is even a non-zero probability that one day we will finally see Ethereum 2.0 released. 

b) Unpopular decisions may be lobbied for 

The other side of the coin is the possibility of forcing unpopular decisions, and such decisions 
not being rejected by the community due to the developer’s strong authority, which can 
outbalance even a majority disapproval. 

c) Fork prevention 

On the other hand, the possibility of forcing unpopular decisions prevents a platform from 
forking. Even if those who disagree with the developer’s course start a fork, most of the 
community will be highly likely to support the main fork unless the developer messes up really 
bad. 

Speaking of Ethereum, the most vivid illustration of these statements is the DAO fork. Events 
following the DAO hack have allowed us to learn two lessons from this situation – on the one hand, 
the creator can have enough influence to force a decision that goes against the rules of the system, 
while on the other hand, the decision made by the creator, even if heavily criticized, can set the sole 
direction in times of uncertainty, preventing the system from shattering into lesser forks and falling 
into oblivion. 

3) Conclusion 

All this leads to the conclusion that decentralization of the development process is not a matter of 
particularly high importance. Distributed development can cause more troubles than it solves, so it 
is highly uncertain whether we should interpret it positively, especially considering that in practice it 
is almost impossible to truly decentralize the development process. On the other hand, centralized 
development is mostly beneficial to the platform, and after all it may become even more acceptable. 

https://bitcoincore.org/en/2018/09/20/notice/
https://www.coindesk.com/understanding-dao-hack-journalists/
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We do not support a “decentralize everything” approach, since decentralization is not the ultimate 
goal, but merely the means of reaching other goals. If it becomes to the detriment of the system, 
there is no need to stick to it no matter what. 

There is one important question, however, that we should investigate to evaluate decentralization 
with respect to the development process: 

a) Obstacles to creating a fork 

With regard to the development process, what is important is not the actual distribution of the 
process itself at any given time but the possibility of the free development of an alternative 
software, which includes the fork creation. 

This means that the software should be free and open source. This will provide an opportunity 
to develop alternative forks or clients in the case that community does not support the current 
developer’s course, which will actually ensure the plurality of opinions and the desired 
decentralization. 

If the developer protects the software by copyright, patent or any other available methods he 
or she will monopolize the opportunity to change the rules, and the community will have no 
option but to accept the developer’s choices, which means that such a system cannot be 
considered decentralized. 

6. Overall decentralization level assessment 

Having formulated all the questions needed to assess the level of decentralization of each 
component of the system, we can now develop an approach to assessing the overall level of 
decentralization. 

We can follow one of two main approaches to solving this task: 

a) Calculate the median. 

We can take an assessed level of each component and discover an average value for it, which 
will show the overall level of system decentralization. For example, if the system is more 
centralized in some respects, but provides more decentralization in others, these aspects will 
balance each other and provide a medium overall level. 

b) Determine the bottleneck. 

The overall level can also be estimated through its weakest point. We find this approach more 
reasonable in practice. 

An important property of decentralization is that any component can become a point of 
failure. There are some existing projects that pretend to be decentralized by having certain 
decentralized components, but at the same time, they restrict creating forks or empower a 
single entity with censorship capabilities. Despite that they actually provide some 
decentralization from certain points of view, they obviously cannot be called decentralized 
overall. 

This is why we believe that each component must bear a sufficient level of decentralization for 
the system to be considered decentralized. 

7. Decentralization of some popular blockchains 

Let us pick up three popular blockchain platforms and evaluate the decentralization level of each by 
applying the approach described above. 
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At the time of the writing of the white paper, Bitcoin and Ethereum were the undisputable industry 
leaders, which is why they should definitely appear on our list. The choice of a third competitor is not 
so trivial, however. 

From the point of view of market cap, the next competitor is Ripple, which is obviously centralized 
and is not positioned as a cryptocurrency initially. Bitcoin Cash and Litecoin are too close to Bitcoin 
in design, which makes their analysis unreasonable. For these reasons, EOS, being a recent project 
with a significantly modified design, seems to be the most relevant choice. 

1) Bitcoin 

Bitcoin is the industry leader and the first platform that can be described as a decentralized 
payment system. It would be logical to use it as a benchmark for any other systems and assess 
whether they managed to provide better decentralization. 

State transition 

The Nakamoto consensus does not feature any particular liveness threshold, and as long as the 
system holds synchrony, the main properties that may be influenced by a coordinated group are 
safety and fairness. 

We have already evaluated Bitcoin’s safety threshold and concluded that it would take about 0.3% of 
Bitcoin’s total market value to violate safety. It should also be taken into account that these 
expenses are not irrecoverable. 

Considering the importance and value of Bitcoin in terms of the whole blockchain industry, we may 
take this numbers as a default benchmark and presume that it is equal to a medium level of 
decentralization. 

As for fairness, Bitcoin fails to provide an acceptable level of decentralization. 

It is widely known that Bitcoin mining is mostly controlled by several major mining pools. As of the 
beginning of 2019, five pools controlled >50% of the total hashrate. This means that the coordinated 
actions of five actors could result in any kind of selfish behavior. 

Bitcoin protocol is vulnerable to selfish mining and censorship. Spy mining does not seem likely to 
occur, since Bitcoin has quite a long block time and small block size, due to which the spy mining 
strategy does not bring any tangible benefit. 

Censorship may become a problem, however. Since only a few actors produce the overwhelming 
majority of blocks, they may come to an agreement about the set of transactions to include in the 
blocks. 

Assume that there are two competing services that use Bitcoin as their primary (or the only) 
payment method. One bribes all the major mining pools to reject all the transactions of the other 
one. The second service’s transactions start being processed extremely slowly, and eventually the 
service loses the competition for this reason. This is just one of many possible scenarios involving 
censorship abilities. 

Hardware and bandwidth requirements (entry threshold) 

All PoW-based systems in the mature state require expensive professional hardware and a very 
meticulous approach to economic efficiency to keep mining activity profitable. We can confidently 
assert that mining nowadays is a purely professional enterprise wherein altruistic behavior from 
participants cannot be expected, and we should conclude that decentralization from this 
perspective is below average. 

Though the bandwidth requirements are low, this does not significantly help the situation. 

As for database storage, since Bitcoin does not feature sharding and uses the UTXO transaction 
model, it requires the full blockchain to be stored on each node, which leads to the high storage 
space requirements. With the current block size, the bandwidth and computing power 

https://www.blockchain.com/pools
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requirements are low, so it is easy to run a full node of Bitcoin even at home if the user is ready to 
sacrifice disk space. 

If the system load grows significantly, however, database distribution may drastically decrease, 
although that would require a hard fork to extend the block size limit. 

From this point of view, Bitcoin does not provide a sufficient level of decentralization, assuming that 
the system is scaled commensurately with the growth of demand. 

Development 

Bitcoin already features many forks, and their number is constantly growing, so there are no 
obstacles to forking. This may lead to the conclusion that from this perspective Bitcoin is highly 
decentralized. 

Bitcoin’s architecture (as well as that of any other PoW system) has one significant peculiarity, 
however – mining power can be freely applied to any system that uses the same hashing algorithm, 
which obviously includes all the forks of any given blockchain. 

In the beginning of 2019, the Bitcoin hashrate reached approximately 40 EH/s, while the hashrate of 
Bitcoin Cash (the second largest fork of Bitcoin) reached only about 1.5 EH/s. Such a huge difference 
shows that in the case that major miners consider a fork as threatening their interests, they can 
instantly use just a small fraction of their hardware to execute double-spend attacks on any 
undesired competing fork, thus depriving it of the users’ trust and of the possibility of further 
existence. 

This example shows that the possibility of fork development depends completely on the attitude of 
a small group of mining pools or even single powerful miners, and therefore the level of 
decentralization is low. 

Overall level 

We can conclude that, due to the inherent shortcomings of PoW-based consensus, which have led 
to the emergence of mining pools and concentration of power in the hands of a small group of 
actors, Bitcoin’s decentralization is below average. 

2) Ethereum 

Ethereum represents a different concept of the use of blockchain technology – a smart contract 
platform or a decentralized Turing machine. It also features an accounting model instead of 
Bitcoin’s UTXO approach. Considering that Ethereum appeared much later than Bitcoin and has 
many technical differences with it, it is interesting to learn whether it has made any significant step 
toward providing a higher level of decentralization. 

State transition 

The consensus protocol of Ethereum is derived from the Nakamoto consensus, so it holds roughly 
the same properties.  

Ethereum’s safety guarantees are based on the “honest majority” assumption. As we have already 
figured out, honest majority is a highly conditional notion, and it is better to evaluate the practical 
ratio of the majority of voting power and the market value of the system. Let us apply the same 
approach as we did for Bitcoin to make the comparison fair. 

The lowest registered hashrate occurred in the Ethereum network on Feb 3, 2019. The hashrate 
reached 139.15 TH/s on that day, which means that 

139.15 ÷  2 =  69.75 TH/s 

was enough to perform a double spend. The total market cap reached about 11.5 billion USD. It is 
much harder here than in the case of Bitcoin to estimate the price of the hardware that could 
produce the required hashrate, since there can be many possible configurations, but let’s pick up a 

https://etherscan.io/chart/hashrate
https://coinmarketcap.com/currencies/ethereum/
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common mining rig that is powered by 8 AMD RX580 GPUs and costs roughly $2,100. Such a rig 
produces approximately 240 MH/s, so we would need about 

69,750,000 ÷  240 =  290,625 

mining rigs. The overall expenses for an attack would reach about 

290,625 𝑥 2,100 =  610,312,500 USD 

which gives us the Ethereum safety coefficient of 

610,312,500 ÷  11,500,000,000 =  0.053 

The result is actually impressive in comparison to Bitcoin. Such a difference can be explained by the 
significantly higher emission rate of ether, which makes mining more profitable and leads to an 
increase in the hashrate, as well as in several other factors. 

As in the case of Bitcoin, the expenses are partially recoverable. Moreover, whereas Bitcoin ASICs 
actually have near-zero applicability in any task except Bitcoin mining (or that of any other SHA-256 
based platforms), the GPUs used for Ethereum mining are standard PC hardware, and it should be 
much easier to resell them. We should note, however, that with regard to our example it would be a 
non-trivial task to sell a couple million RX580 graphic cards on the secondary market. 

Overall, it is clear that, with the current emission rate, Ethereum provides higher safety guarantees 
than Bitcoin, which leads to the conclusion that Ethereum’s decentralization level from this 
perspective is higher. The relative emission rate is constantly decreasing, however, and at some 
point, the double-spend resistance of Ethereum is likely to lower to the level of Bitcoin or even 
further, although we cannot be sure that this will ever happen, since the scheduled protocol 
modification should change the situation completely. 

As for fairness and possible selfish behavior, Ethereum has all the same problems as Bitcoin. In 
addition, Ethereum is vulnerable to spy mining, which could actually be witnessed in the system in 
2018. We can state that the level of decentralization from this point of view is low. 

Hardware and bandwidth requirements (entry threshold) 

As with Bitcoin, Ethereum requires a professional approach and expensive hardware to participate 
in mining. Most common mining rigs include 6–12 GPUs, which makes using a standard PC for 
mining economically unfeasible, so we should conclude that decentralization from this perspective 
is below average. 

As for data storage, there are two types of database-storing nodes – a full node and an archive node. 
Requirements for the latter are much higher, but archive nodes do not provide additional resilience 
for the system and are mostly needed for statistical and research purposes. To assess 
decentralization, we should count only full nodes, which are crucial for the system’s operation. 

Since full nodes need to process smart contracts in order to verify blocks, their hardware 
requirements are rather high. This is a natural characteristic feature of the Ethereum concept – as a 
decentralized computer, Ethereum obviously requires computing. 

Ethereum uses the accounting model instead of Bitcoin’s UTXO model, so it is better optimized in 
terms of storage. On the other hand, Ethereum architecture requires all smart contracts and their 
states to be stored on a node, which leads to an increase in the occupied disk space. As a result, 
Ethereum’s storage requirements are comparable to those of Bitcoin. 

Overall, we can assume that in the case that the system is scaled commensurately with the growth 
of demand, in time hardware requirements will become rather high, which will reduce the number 
of full nodes and database instances unless some economic incentives are adopted. The level of 
decentralization under a heavy load will be below average. 
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Development 

The situation is exactly the same as Bitcoin’s, so we can state that the level of decentralization from 
this perspective is low. 

Overall level 

We can see that, although in some respects Ethereum has managed to secure a higher level of 
decentralization than Bitcoin, its overall level is still below average, for many problems remain 
unresolved. We should keep in mind, however, that with the introduction of Ethereum 2.0, all of the 
properties we have analyzed are expected to change. 

3) EOS 

EOS is an example of a more recent project. It uses the DPoS consensus protocol and is basically a 
smart contract platform like Ethereum, with an emphasis on fast transactions, high scalability and 
governance. Let us see whether the developers have managed to provide sufficient decentralization 
along with the mentioned properties. 

State transition 

EoS architecture is radically different from most blockchains due to the fact that not only resources 
defy power within the system, but also social and political factors, which makes our standard 
approach not fully applicable here. 

In EOS, consensus is reached by the votes of 21 block producers. Due to the majority consensus 
threshold and the longest chain rule, the coordinated actions of only 11 pre-known actors can result 
in any type of harmful selfish behavior, including censoring and double-spending. Moreover, due to 
the essence of the DPoS algorithm and its political nature, no resources in possession are actually 
required to become a block producer and the only thing a possible attacker risks losing is his or her 
reputation. This means that we cannot calculate a safety coefficient as we did in previous cases. 

In addition, EOS is conceived as a governed system and features an entity called the EOS Core 
Arbitration Forum (ECAF), which is endowed with extremely broad powers, including the ability to 
reverse confirmed transactions and suspend user accounts. 

Although the system was launched not long ago, there have been several reports of the practical 
use of these powers. 

Since these opportunities can be used not only for the sake of the entire community but also for the 
benefit of any entity or group, this leads to the conclusion that EOS completely fails to deliver 
decentralization from the point of view of resistance to selfish behavior. 

Overall level 

Since we already see that EOS’s state transition process is centralized, there is no sense in 
researching other features, and we can conclude that the overall decentralization level of EOS is 
extremely low, so it cannot be considered to be in the same league as decentralized platforms. 

8. Decentralization of Dynemix 

During the development of Dynemix, we paid a lot of attention to the matter of decentralization. 

As we have already figured out, first-generation blockchain systems based on PoW protocols turned 
out to be not as decentralized as expected. At the same time, more recent projects’ developers tend 
to trade decentralization for speed and scalability. 

We do not support such an approach, and we have put a lot of effort not just into ensuring a 
sufficient level of decentralization but also into making Dynemix one of the most decentralized 
blockchain systems to date. 

https://cointelegraph.com/news/eos-proves-yet-again-that-decentralization-is-not-its-priority
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Let us explore what has been achieved with the help of our approach. 

1) State transition 

a) Safety and liveness thresholds 

Since Dynemix features sharding and a two-layer consensus, the question of safety and 
liveness thresholds is complicated. 

The system makes progress as long as at least one shard-block at each height gets approved 

and 3

5
 of minters are honest and online. We may intuitively assume that the share of the global 

stake pool that is required to stall the protocol lies between 1

3
 and 2

5
. At the same time, a 

consistent violation of safety would require roughly 2

3
− 𝜀. A more precise assessment can be 

provided after the test period. 

All in all, we may state that, from the point of view of raw numbers, the safety and liveness 
thresholds are close to most asynchronous BFT protocols. 

We have applied a set of measures, however, that ensure the growth of the global stake pool 
size, including 

 setting a low minimal stake boundary; 

 securing low hardware and bandwidth requirements; 

 allowing funds to be unbonded quickly; 

 setting a high issuance rate; 

 adopting a model of weak responsibility. 

With the adoption of these measures, the share of resources needed to affect the state 
transition in relation to the market cap of the platform is expected to be significantly higher 
than in other blockchain systems. 

b) Participants 

Resisting professionalization of the state transition processing was one of the key goals of our 
project. Although we needed to provide sufficient speed and scalability, at the same time we 
managed to set a low participation threshold. 

The involvement of ordinary users is ensured by providing the opportunity to participate at will 
without the need to hold uninterrupted availability (the model of weak responsibility) and 
having a low minimal stake threshold. Furthermore, the entire economic model of Dynemix is 
designed to favor regular users instead of minor elite groups. 

c) Initial token distribution 

Given our devotion to decentralization, we do not plan to distribute the initial token volume in 
a manner that can allow the concentration of a large share among a small group. The bulk of 
tokens will be distributed via a prolonged public sale at a market price, which seems the 
optimal way to assure the widest distribution. 

d) Issuance model 

Even if certain entities manage to acquire a large share of tokens at the initial stage, it will not 
help them keep control of the system later on. Unlike most PoS designs, which make the rich 
get richer (because the largest stakeholders obtain most of the issued coins), Dynemix 
features a unique issuance model that disperses the vast majority of the issued dynes among 
a large number of participants (helicopter money), thus constantly reducing the relative size of 
the initially acquired shares and preventing the concentration of power. 
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2) Hardware and bandwidth requirements (entry threshold) 

During the development process, we devoted a lot of attention to optimization. Since we intended 
to create a truly decentralized system that was at the same time capable of processing a high 
transaction flow, we had to implement a number of unique solutions. 

Given the implementation of quilt technology, Dynemix features two types of minting nodes: a full 
node and a master-node. Although master-nodes provide a number of benefits to the system, they 
cannot directly affect state transition, which is why decentralization is considered at the full-node 
layer. 

Full nodes store only the current state and information about recent state changes. This does not 
require much storage space even under an intense load. A very important achievement is 
maintaining the storage and traffic overhead dependent only on the current system load, regardless 
of the time that has passed since launch (i.e. the growth of the blockchain does not affect the 
overhead). Full nodes are not obliged to store the entire blockchain and can securely synchronize 
with the system any moment without the need to download a complete set of missed blocks. 

Sharding helps optimize the validation process on both the blockchain and quilt layers, and, 
according to our estimates, a mid-class home PC will be capable of participating even after the 
system significantly scales up. 

Master-nodes store the complete blockchain with all transactions included. Running a master-node 
requires much more resources, but this mode is expected to be employed for professional purposes 
by services such as block explorers, exchanges etc. Though they store a lot of useful data, master-
nodes are not crucial, and, even in case of their complete shutdown, the robustness of the system 
will not be threatened (although the additional line of defense will become unavailable). 

Considering that full nodes are the main type of nodes that ensure system availability and resilience, 
we can state that Dynemix provides an exceptional level of decentralization. 

3) Development 

Our system features no obstacles to launching forks. Major stakeholders will not be able to 
compromise undesired forks; therefore, from this point of view, Dynemix’s decentralization level is 
very high and equal to that of other open PoS systems. 

4) Overall level 

We can conclude that we managed to greatly increase the decentralization of every component, 
thus creating – without any exaggeration – one of the most decentralized platforms to date. 
Moreover, we have put a lot of effort into ensuring that the achieved parameters will not degrade as 
the system scales up with popularity. 

IX. Payment channels and smart contracts 

1. Payment channel technology summary 

One of the major flaws of the first blockchain implementations was the scalability issue. Since no 
solution was found that could allow this issue to be resolved on the blockchain layer without 
sacrificing security or decentralization, the developers turned to second-layer solutions. 

Payment channels are an off-chain solution that can take the load off the main layer and allow fast 
transactions to be made without the direct use of a blockchain. 
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The most commonly known implementation of the payment-channel technology is Lightning 
Network. It is believed to be the solution to Bitcoin’s block-capacity issue. 

We strongly believe, however, that it is not. The reason is that Lightning Network is not a part of 
Bitcoin. It is a separate payment system that can use bitcoins as transferable units, while at the 
same time not actually being a part of the Bitcoin protocol, apart from its opening and closing 
points. Technically, each payment channel is a separate two-replica SMR system with specific 
liveness and safety properties. 

For this reason, it simply cannot solve any Bitcoin architecture issues directly. It is the same as 
claiming that fiat cash can solve the scalability issue because anyone can exchange Bitcoins for fiat 
cash, perform any number of transactions he or she wishes and purchase Bitcoins again in the end. 

We have already expressed our skeptical attitude toward payment channels throughout this white 
paper, and now it is time to explain why we do not consider this technology beneficial, as it is often 
presented. 

Payment channels feature some technical restrictions that make their implementation very specific. 

 Channels can be opened only between two accounts. 

 Channels’ capacity is limited by the amount of the opening transactions. 

 Channels exist within a predefined amount of time. 

How does this affect the user experience? In most cases, money is transferred one way (from a client 
to a merchant). Situations when back-and-forth transfers are needed are extremely rare and often 
can be resolved by debt-clearance solutions without the direct involvement of the payment system. 
Considering that a payment channel requires at least two transactions to be sent to the blockchain 
(opening and closing) from each party, it only makes sense to open a channel between Alice and 
Bob, when Alice certainly knows that she will need to make more than two token transfers to Bob in 
a short period of time. 

Given that a payment channel’s capacity is strictly limited by the amount agreed upon by the 
parties in the opening transaction, the range of application of this technology seems quite limited. 
For now, we see that this can mostly be used for various kinds of repetitive and streaming services, 
in cases where it is convenient to pay for small portions of distributed content from a certain 
provider. 

2. Payment channels network 

To increase the capabilities of the technology, a relaying solution was introduced. 

Suppose Alice wants to send tokens to Bob but does not have a direct open channel to Bob. At the 
same time, Alice has an open channel to Carol, and Carol has an open channel to Bob. Alice can use 
Carol as an intermediary to transfer tokens through the existing-channels route. Such a route can 
also be complex and involve multiple relays. 

The routing system can unite all users in a single network and provide fast and secure off-chain 
token transfers, but, unfortunately, its design features certain limitations, which are the reason we 
are not optimistic about this technology. 

Since, after opening a payment channel, the specified number of tokens is blocked in the 
blockchain until the moment the channel is closed, it is impractical to open payment channels just 
in case. This means that if Alice opens a channel with Carol, she pursues one of the following goals: 

 She wants to transfer some tokens directly to Carol. In this case, using this payment channel as 
a relay for the token transfer 𝐴 → 𝐶 → 𝐵 is pointless, since it will reduce the capacity of channel 
𝐴𝐶, thus forcing Alice to open another channel to be able to settle her deal with Carol, when it 
would be easier for Alice just to open a new channel directly with Bob. 
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 She predicts that Carol will be willing to become an intermediary for token transfers to various 
recipients, possibly including Bob or someone who has a channel to Bob. 

From Carol’s point of view, the situation looks quite similar. If she opens a channel with Bob, then 
she pursues one of the following goals: 

 She wants to transfer some tokens directly to Bob. In this case, using this payment channel as 
a relay for the token transfer 𝐴 → 𝐶 → 𝐵 is pointless, since it will reduce the capacity of channel 
𝐶𝐵, thus forcing Carol to open another channel to be able to settle her deal with Bob. 

 She predicts that someone will be interested in transferring tokens to Bob and wishes to 
become a relay for that transfer. 

This shows us that being a relay is not something that any user will be willing to do. Becoming a 
relay only makes sense if the user possesses a significant number of tokens in the blockchain, which 
she is ready to block, and she can ensure that enough users will be willing to use her services. 

These obstacles make relaying a purely professional activity and transform a payment channel 
network into something resembling a banking system endowed with the following properties: 

a) Relays take fees for their services. 

For Carol, being a relay requires possessing and blocking the number of tokens equal to the 
overall capacity of the channels opened simultaneously to all other relays and/or clients. The 
only reason Carol may wish to bear this burden is to get an economic return. 

A very important condition is whether the channel is opened in a PoW or a PoS blockchain. In 
PoW systems, users cannot earn tokens for staking, so hodlers may be initially interested in 
becoming relays. 

PoS is a totally different matter – since being a relay requires the blocking of tokens, Carol will 
be willing to become a relay only if she can charge fees comparable to a possible income from 
block production. Otherwise, she will prefer to use the same number of tokens as stakes for 
minting. 

If a PoW system supports Turing-complete smart contracts, it may become a timebomb for 
the payment channel network built on top of that system. Certain smart contracts may enable 
the placing of higher-yielding deposits (e.g. DAOs, crypto-collateralized stablecoins), which will 
incentivize hodlers either to raise fees in the payment channel network to ensure a level of 
return equal to the smart contract’s yield or to relocate deposits, thus drastically lowering the 
network’s bandwidth. 

At the same time, the route between Alice and Bob may include multiple relays, each of which 
will charge its own fees, thereby possibly making the total fee higher than a fee for a direct on-
chain transaction. 

b) Relays are points of failure. 

A payment-channels network is not a peer network, as most blockchains (including Dynemix) 
are. 

Its overlay topology may be roughly described as hybrid star-mesh. Multiple clients are 
connected to a certain central relay, which forms a star topology. Then relays are connected to 
each other through a partially connected mesh network. 

Such topology means that in the case of Carol’s failure all her clients will be fully disconnected 
from the network and their tokens will be blocked in the blockchain until the channels’ TTLs 
expire or Carol goes back online. 

Clients cannot simply solve this problem by connecting to multiple relays, since each payment 
channel requires the blocking of tokens in the blockchain; therefore, clients will have to block 
a separate share of tokens for each connection. 
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c) Relays have censorship abilities. 

Though Carol cannot steal tokens from Alice or Bob, she has strong censorship abilities, since 
she can refuse to fulfill her part of the deal by her own will, and Alice’s and/or Bob’s tokens in 
the channel will be blocked until the channel expires. Due to the limitations of the payment-
channels technology, such actions cannot be penalized. 

In most cases, these opportunities do not pose a serious threat, since such behavior does not 
provide any benefit to Carol. Moreover, she is economically incentivized to behave correctly in 
order to attract more customers to her mediation services. 

Carol may be vulnerable to pressure, however. The more clients Carol has and the more she 
risks losing, the more cooperative she will become. Considering that Carol’s node is a point of 
failure for all her clients, we may conclude that a payment channel network is highly 
vulnerable to censorship. 

These features make the user experience with payment channels drastically different from the first-
layer blockchain. A payment-channel network lacks decentralization, fault tolerance and censorship 
resilience – very important features of blockchain systems. At the same time, most common users 
do not recognize the difference between the first and the second layer and consider Lightning 
Network a part of Bitcoin. 

This is why we do not consider the payment channel technology a good solution to the scalability 
issue. The technology is not bad in itself, but the misrepresentation of its nature confuses 
cryptocurrency users, who for the most part do not have sufficient competence to understand all 
the flaws of the mentioned solution. 

In defense of payment channels, we can say that, for now, they are supposed to be used mostly for 
microtransactions, and it seems to be the best way to use them, since payment channels can 
provide the necessary speed for slow blockchains like Bitcoin. At the same time, the flaws 
mentioned above become less crucial when the stakes are low. 

3. Atomic swaps and cross-chain transactions 

HTLC (the underlying technology that powers payment-channel networks) can be also used for 
atomic cross-chain swaps. An exchange of different cryptocurrencies can be performed directly by 
two parties by opening payment channels in both blockchains and closing them after the parties 
fulfill their obligations or the TTL expires. 

The proposed solutions for atomic swaps via HTLC seem generally reasonable, as they solve the 
problem without intermediaries and thus keep decentralization on the level of the first layer. 

Unlike simple swaps, the problem of cross-chain transactions between arbitrary blockchains 
requires a more complex solution. 

To date, there are several concepts for resolving the matter by involving second-layer intermediaries 
or building a top layer above the blockchains that is controlled by a consensus of validators, thus 
creating a heterogeneous multi-chain (e.g. Polkadot). This should become a decentralized solution 
for cross-chain transactions. 

The problem is that the currently proposed protocols are not as decentralized as we would wish 
them to be. For example, Polkadot uses Delegated Proof of Stake as a consensus model for the top 
layer (Relay Chain). DPoS indeed can be faster than most PoS alternatives, but we are quite skeptical 
about the level of decentralization that can be achieved with such a design. 

Considering that joining such systems requires modification to the blockchain protocol and 
granting of authority to the top-layer validators, we do not find solutions of this kind appropriate for 
Dynemix, and the system will likely not go beyond cross-chain swaps. The final decision will be up to 
the community. 
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4. Payment channels in Dynemix 

Taking into account the above, atomic swaps via HTLC seem to be a viable option. Therefore, in the 
case that this technology becomes widely adopted, adding the support of HTLC to Dynemix to 
enable atomic swaps seems an option worth considering. The final decision will depend on the 
attitude of the community. 

As for the payment channels themselves, there is not much use for this technology for Dynemix, 
since our system does not suffer from the scalability issue. Considering that payment channels form 
a separate network with its own rules (followed by the drawbacks mentioned above) and that 
recognizing the payment-channel network from the blockchain layer may be troublesome for most 
users, we would advise avoiding the use of this technology unless it becomes clear that it provides 
some really significant benefits (like the mentioned atomic swaps in the case of their mass adoption 
or the possibility of implementing off-chain smart contracts). 

It is also worth mentioning that a full-scale payment-channel network cannot be formed on top of 
Dynemix for economic reasons. Since Dynemix features free transactions, there are no economic 
prerequisites to become a relay – if a relay charges commission for its mediation services, users will 
prefer sending transactions directly to the blockchain free of charge. At the same time, it makes no 
sense to perform the relay functions in a payment-channel network without receiving a reward, 
since users could engage in minting instead. The situation may change, though, if Dynemix begins 
to support off-chain smart contracts, which are not supported on-chain. 

5. Smart contracts in Dynemix 

As mentioned, implementing virtual machine technology can negatively affect the platform’s 
stability and scalability, as well as degrade certain features that allow Dynemix to be a breakthrough 
payment platform. 

For these reasons, we will not include any smart-contract support in the first version of the system. 

If the system, however, shows a performance reserve after being tested under substantial loads 
(with at least 10 million active users), adding some limited smart-contract support may be 
considered. This should most likely not include Turing-complete code support, but rather specific 
templates with a limited set of variables that can actually benefit the cryptocurrency as a means of 
payment and at the same time not completely turn it into a decentralized virtual machine. 

As mentioned, adding certain types of smart contracts can allow not only the implementing of 
scripted business scenarios, but also the possibility of creating payment channels on top of Dynemix 
and using a variety of off-chain smart contracts with the help of DLC or any other possible 
techniques that can be developed in the future. Of course, such contracts will have limited 
functionality and will not bear the same properties as smart contracts operated on the blockchain 
layer, due to the flaws of second-layer solutions, but nevertheless it is a viable option for 
implementing smart contracts without increasing the load on the blockchain. 

We should note that such a decision would require a hard fork, so the possibility of implementing 
smart contracts will depend on the community’s attitude. 
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X. Personal data, censorship and interaction 
with authorities 

1. Unbiased content filtering 

We stand for the protection of the substantive human rights, with freedom of expression among 
them. Unfortunately, human rights can be also exercised solely for malicious purposes. This is why 
freedom of speech is usually not considered absolute and is subjected to certain limitations. 

The problem is that, once we appoint a censor, we cannot be sure that such limitations will be 
applied objectively and impartially. In real life, it often happens that governments use their 
censorship abilities to oppress any opposing opinions and deprive people of their ability to express 
their disapproval of government actions. 

Since we are utilizing a blockhain protocol with embedded strong censorship resilience, it would be 
unwise not to use the emerging opportunities for censorship-free interaction. At the same time, we 
should secure certain ways of preventing users from abusing this opportunity for malicious 
activities. 

To solve both problems at the same time, we decided to apply limited content filtering via guardian 
oracles, which will have the following specs: 

a) Blacklists of banned users will be administrated by a specially appointed entity or by any 
third parties. 

By default, when a user downloads any version of the Liberdyne messenger, it will contain an 
active blacklist of user accounts that have been accused by an appointed entity of breaking 
the rules. In the early stages, the blacklist will be fed by an oracle controlled by developers. 
Later, the functions of maintaining the oracle may be transferred to a specially created 
organization. 

There will also be an opportunity to apply any other blacklists, including those administrated 
by third parties through personal preferences, if the user wishes. For example, there can be 
organizations monitoring certain types of undesired content or parental-control services that 
the user wishes to apply. 

It will be also possible to create decentralized oracles that will be controlled by cumulative 
voting or any other possible types of oracles that the community may come up with. 

b) Filtering exists only on the messaging-application layer. 

Filtering will be applied only toward the messaging functions; blacklisted users will not be able 
to send messages, calls, files or requests to be added to contact lists or perform any other 
messaging functions toward other users. 

At the same time, no censorship of any kind should be ever applied on the blockchain layer, 
since it is a straightforward violation of decentralization. 

If necessary, it will be possible to create a decentralized oracle that will manage censorship on 
the blockchain layer (i.e. provide a set of default rules for the Guess My Block game). We are 
uncertain whether this approach is appropriate, however. The final decision is up to the 
community. 

c) Filtering can be deactivated by the user at any time. 

Once the user decides that he does not need this kind of protection, he can easily disable 
filtering through the app’s preferences and get a censorship-free messaging app.  
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We cannot guarantee that such an opportunity will be available for all platforms, since it may 
violate the platform administrator’s policy. 

The function of enabling/disabling blacklists will be assuredly available on the *nix, Windows 
and Android versions, since these platforms do not restrict the installation of apps downloaded 
from an arbitrary source. 

As for the versions distributed through the App Store and Google Play, this opportunity will 
solely depend on Apple’s and Google’s attitude toward it. In the case that we get any claims 
form Apple or Google, we may have to remove the blacklist-disabling feature from the relevant 
version. 

The combination of these features ensures an unbiased approach to filtering and at the same 
time provides sufficient protection from malicious content distribution. Even If the developers (or 
other entities controlling the default guardian oracle) try to apply any prejudiced filtering rules, 
users are free to choose another filtering solution, which renders such attempts inefficient. 

In general, filtering will be mostly used to protect users from spam and certain kinds of undesired 
content, but in the case that the user wishes to access any content, he can easily disable censorship. 
We believe that it is up to the user to decide how he wants to use the possibilities provided by the 
app, unless his actions violate another user’s rights. 

We do not support any darknet activities, but we also understand that it is impossible to fully restrict 
them. For example, we can restrict users from disabling the blacklist, but, since it works on the 
application layer and not on the protocol layer, any third party can modify the code (as we go open 
source) and create an alternative client that has no censorship. Therefore, such actions are pointless. 
On the other hand, if we try to apply censorship to the protocol layer, this would instantly ruin 
decentralization, which is unacceptable. 

2. Liberdyne and personal data 

Many countries have adopted comprehensive data-protection laws. The most commonly known is 
GDPR, which regulates the processing of personal data within the European Union. Since the 
problem has been widely discussed, we also took it into account while building the system 
architecture. 

Our approach is simple – due to its distributed architecture, the Liberdyne messenger will not 
collect or send any user data, either to us or to any other parties, unless it is required by the 
transport protocols (for example, if the user enables relay chains for anonymity purposes, all his or 
her correspondence will be routed through a chain of nodes in encrypted form). This can be easily 
verified by anyone, since the source code of the app will be publicly available. Our access to user 
data is limited to the information held in the public domain; therefore, we do not have to comply 
with any data-protection regulations. 

There may be, however, certain situations when users provide us with their personal data by choice, 
for example, while contacting the support or abuse departments. In such cases, we will process the 
personal data according to the regulations, and all of the collected data will be instantly deleted 
after the matter of the appeal is resolved (unless the regulations require temporary storage). 

3. Interaction with authorities 

Since we do not run any servers that process user data or participate in the system operations in any 
other way, apart from running our own peer nodes, we cannot collect any user-generated content 
that may be of interest to governments, corporations or other parties. 

If any information about the user’s personal data, communications, interactions with other users etc. 
is requested by authorities, we will not be technically able to satisfy such a request. 

https://gdpr.eu/
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This may cause pressure from the authorities of certain states, where developers of a 
communication app are obliged to implement means of obtaining any user’s information (including 
transmitted content, like private messages, files etc.) and providing it to the authorities upon 
request. 

We believe that such laws go far beyond reasonable human-rights limitations, and we do not 
support this paradigm. We have intentionally developed an architecture that fully prevents any 
possibility of imperceptible user data obtainment, either by ourselves or by any third parties. 

Our approach is fully consistent with the ideas outlined in the International Covenant on Civil and 
Political Rights, the UNGA Resolution 68/167 and the subsequent report of the United Nations High 
Commissioner for Human Rights A/HRC/27/37. 

Nevertheless, we understand that our product’s release may cause a negative reaction from certain 
autocratic governments that intend to fully control the private lives of their citizens, and that we will 
face attempts to block Liberdyne in a number of countries. Considering the current political 
situation, these will most likely be North Korea, Russia, China and Iran. 

These attempts will most likely fail, considering that Liberdyne is designed to resist blocking 
attempts much better than any centralized messaging app possibly can. 

On the other hand, the majority of democratic regimes around the world stand for the protection of 
substantive human rights and the freedom of expression among them, hence, considering that we 
apply reasonable limited censorship to restrain the abuse of those rights, we expect to avoid 
confrontations with the authorities of most countries. 

XI. Open source 
From the very start, the crypto-community has relied on certain principles that form the basis of 
crypto-philosophy. One of these principles is to make cryptocurrency software fully free and open-
source to ensure the possibility of the decentralized and transparent development of the platform. 

To prove the proclaimed security of a messenger app, its source code should also be open to public 
examination and independent audit. 

Considering the importance of making both components of our app open, we intend to make 
Liberdyne fully free and open source, distributed under the GNU GPL (other open licenses may also 
be considered). 

If we remove copyright straight from the start, however, we may provoke the creation of numerous 
scam and copycat projects, which will try to confuse users. Without any legal protection, it will be 
challenging to deal with such behavior, and this can cause a lot of problems both for us and for 
users, who will find it difficult to distinguish the original Liberdyne/Dynemix. 

At the same time, we do not want to register any patents for our solutions, for we intend eventually 
to make the platform fully free and open, and we should not obstruct the process with our own 
actions. 

To solve this matter, we have decided to distribute the software under different licenses during two 
periods. 

a) The proprietary period – from the start of the public testing to a short period after the 
mainnet launch. 

From the first publication of the software, it will be distributed with an open source code but 
under a proprietary license, which will cover the source code by copyright and restrict 

https://www.ohchr.org/EN/ProfessionalInterest/Pages/CCPR.aspx
https://www.ohchr.org/EN/ProfessionalInterest/Pages/CCPR.aspx
https://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/68/167
https://undocs.org/en/A/HRC/27/37
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modification of the code. This is especially important for the test period, as the creation of 
modified versions and forks by users may cause turmoil and negatively affect the 
development process. 

b) The free period – from a short period after the mainnet launch and onward. 

Shortly after the mainnet launch, Liberdyne will be distributed under the GNU GPL, thus 
removing any copyright protection and making the software fully open and free. 

XII. Competition 
It should be noted that the project actually has no direct competitors since the information about 
other cryptocurrency platforms created in a symbiotic relationship with the basic application for 
distribution has not been published even in the form of a project, and we simply have nothing to 
directly compare the Liberdyne/Dynemix project with. 

Nevertheless, as separate components, Liberdyne and Dynemix can be compared to other solutions 
on the market. 

1. Dynemix and other blockchain platforms 

As a cryptocurrency designed especially for everyday use as a payment tool, Dynemix does not 
directly compete with any existing project but rather forms its own niche. We believe that 
blockchain platforms should be classified as follows: 

a) Digital gold (Bitcoin and similar altcoins) 

As we already explained, despite having been called an electronic cash system, Bitcoin actually 
cannot perform cash functions and compete with conventional centralized payment 
platforms. 

This happened due to the technical limitations of the platform and its inappropriate economic 
model. Other altcoins that were not designed to be smart-contract platforms (such as Litecoin, 
Monero etc.) mostly share the same properties. 

These blockchains can serve as a hedging tool, investment asset or tool for settlements 
between big players in the market, but not as a universal medium of exchange on the 
consumer level. 

b) Decentralized virtual machine (Ethereum and similar altcoins) 

This group consists of platforms that allow the execution of Turing-complete decentralized 
scripts. Despite such systems’ being theoretically capable of performing the same functions as 
standard payment platforms, the additional complexity negatively affects their payment 
features and makes it difficult for such systems to compete with payment-focused projects on 
equal footing. 

Since, after the Ethereum release, most developers completely abandoned Bitcoin-like 
concepts and concentrated on trying to create an improved version of a decentralized virtual 
machine, almost all recent projects can be assigned to this group. 

c) Decentralized currency (Dynemix) 

Unlike projects belonging to the previous categories, Dynemix is designed especially to be a 
universal medium of exchange for a wide audience. As mentioned, performing this function 
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requires certain technical, economic and social features that other platforms fail to deliver. This 
is why Dynemix forms a separate group according to our classification. 

During Dynemix’s development, we came across several projects with the same proclaimed 
goal, but we still have not seen any architecture that can allow this goal to be achieved. 

For example, in the alleged TON project white paper, the authors claim they intend to develop 
a mass-market cryptocurrency (basically what Dynemix is), but, in the subsequent technical 
paper, they actually describe a kind of centralized heterogeneous multichain smart-contract 
platform of unclear purpose based on Polkadot architecture, which is obviously not suitable 
for performing the proclaimed functions and cannot compete technically with Dynemix. 

We believe, however, that after our project’s release, some other teams interested in our 
concept may present their own vision, and Dynemix will not feel lonely in this category for 
long. 

2. Liberdyne and other decentralized messengers 

Despite there being several messengers that use blockchain technology, Liberdyne is unique due to 
its development in conjunction with Dynemix. 

As a rule, blockchain platforms are created separately as a tool for the development of a wide range 
of applications, and decentralized messengers are created by other developers as applications on 
top of existing platforms, although there are a few exceptions. For example, Adamant Messenger 
uses its own blockchain but is actually based on Lisk, and its main purpose is message delivery; 
hence, it differs from our concept. 

On the other hand, the Dynemix/Liberdyne project was developed as a whole, and both 
components are interdependent and mutually beneficial. This fact puts Liberdyne ahead of other 
P2P messengers since Liberdyne features a well-designed reward system that encourages users 
‘interest in supporting system operations without relying solely on their altruistic intentions. 

Another noteworthy feature of Liberdyne is its optimal use of blockchain technology. After the 
cryptocurrency boom in 2017, a number of developers introduced concepts of decentralized 
messengers based on blockchain technology. The problem was that many of these projects used 
blockchain technology for the sake of technology, not intending to create an optimized solution 
that could help improve the user experience and create an ultimate product in the first place. 

As a result, to date no one has been able to present a product capable of competing with popular 
centralized solutions. 

On the other hand, Liberdyne uses blockchain technology only to the extent that allows it to achieve 
the proclaimed goals and present a product that can withstand significant loads, providing a user 
experience that is not substantially inferior to centralized solutions (although we have to admit that 
we can hardly manage to reach the same exact level of speed and reliability as popular centralized 
solutions due to the limitations of P2P architecture). 

XIII. Marketing strategy 
We understand that, though we are developing a breakthrough project that may let the whole 
industry take a huge step forward, only those few who are deeply involved in cryptocurrency 
technology will be able to fully evaluate Dynemix’s potential. 

Since our main goal is not just to create a new advanced platform for the cryptocommunity in its 
current state but to spread blockchain technology all over the world via the creation of the first 

https://yadi.sk/i/5XnZOaiN3SZXEQ
https://drive.google.com/file/d/1iJHP2_U22vVVv7SCU8UDCicjQC5vNZZA/view
https://drive.google.com/file/d/1iJHP2_U22vVVv7SCU8UDCicjQC5vNZZA/view
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mass-market product, it is absolutely clear that about 99% of our target audience has a very limited 
basic understanding of the technology. While we can convince some portion of the 
cryptocommunity members of Dynemix’s strong potential simply by explaining all the advantages 
of the platform, it will not work with people who are not much into blockchain technology. 

There is no way we can capture a major audience’s attention long enough to explain all features of 
the Dynemix platform and benefits it can bring to people’s everyday lives, which is why we need to 
introduce another approach that will help us raise interest in the platform even among those who 
do not plan to join the cryptocommunity. 

To accomplish this, we need some simple, and at the same time striking, “killer features” that can be 
easily explained and understood, thus driving public attention to the project by themselves. 
Fortunately, we have a couple of those. 

1. Liberdyne – the next-generation decentralized private 
messenger 

As mentioned, the revelations of Edward Snowden, according to which the US special services had 
been actively collecting people’s private information on a global scale, led to the rise of discussions 
about creating a secure means of communication that could guarantee users’ privacy. 

To solve this problem, the developers of instant messengers implemented end2end encryption. 
Telegram was the first popular app to do so, and it was its major marketing feature. In fact, it was 
the main distinguishing feature of the Telegram messenger back at its launch, while, from the point 
of view of functionality, it was inferior to its competitors (it did not even feature voice calls). Using 
that single feature as the basis of the app’s marketing helped Telegram rapidly gain a significant 
userbase and forced other competitors to quickly implement end2end encryption as well. 

This example shows us that the question of user privacy can be a strong basis for a marketing 
campaign. Even though end2end encryption has not solved the problem of user privacy, since users 
still have to trust the developers, who operate servers through which all user data passes (which 
opens up an opportunity for the meta-data analysis), it helped promote a product to the level of its 
competitors, which were years ahead of it at the time. 

Liberdyne makes a much larger step toward user privacy – it is a next-generation product that 
works fully P2P without any servers involved. In combination with the peer relaying technology 
(SATAN), which provides a whole new level of privacy and security to every user, it can finally give 
users confidence that their communication is reliably secure. 

Due to the excellent censorship resilience of the Dynemix blockchain, we managed to implement a 
new content filtering solution into Liberdyne, which can allow for decentralized unbiased user-
selectable filtering. This approach will put an end to biased censorship, which has been applied by 
major social platforms during the past years. 

Given that Liberdyne is not just offering a slight protocol improvement but is a generation ahead of 
all major centralized instant messaging software, while at the same time keeping most current 
functionality and parameters available, it may provide strong incentives for users to download and 
try it. 

In addition, we should note that the major centralized messengers will not be able to offer the same 
quickly, since it requires a complete architecture redesign. That fact should keep the project ahead 
of any competitors for a long time. 

2. Liberdyne – the messenger that pays you to use it 

By default, the application will be configured to perform a number of functions to support the 
system (namely minting, DOG, SATAN relays, and storage nodes), for which each user will 
automatically receive a small reward, becoming a sort of “miner.” At the same time, the functionality 
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of the mobile versions will be configured so that the user will not feel that there is a significant waste 
of resources (i.e. battery and Internet traffic). If desired, through the settings, the user can both 
increase the amount of resources spent (thereby increasing the reward) or reduce or even disable 
the feature entirely. 

As a result, users will receive a reward in the Dynemix cryptocurrency for the mere act of using the 
application (as “usage” includes system support, like in all P2P systems). At the same time, the 
algorithm of reward distribution will be such that the fewer users who are online, the greater the 
reward each of them will receive. According to our idea, this will encourage users to install the 
application as quickly as possible in pursuit of a larger reward, which should lead to an explosive 
growth of the userbase. When the userbase becomes large enough, people will already be 
interested in using the application for reasons other than receiving a reward. 

Getting a small reward and having the ability to spend it should incentivize a huge number of new 
users to become involved in the cryptocurrency world, allowing them to overcome the entry 
threshold. Thus, we will gain a loyal userbase that has experience using the Dynemix 
cryptocurrency. 

Having learned to use the cryptocurrency on a virtually free basis and realizing its advantages, 
people will be able to gradually exchange their fiat money for it and come up with other scenarios 
for its use by themselves (for example, for payments between users).  

Businesses may also be interested in using Dynemix for payments, given the size of the loyal 
userbase that Liberdyne may obtain, and the possibility of using Liberdyne as a distribution channel 
that can repeatedly exceed the capabilities of any other cryptocurrency platform. 

The inclusion of more users in the Dynemix economy should stabilize its rate and make it a 
convenient tool for any kind of payment. 

Thus, through the use of this simple slogan and the concept behind it, the project has the potential 
to take a leading position in the cryptocurrency market. 

This feature will also help overcome users’ initial reluctance to use a new P2P messenger (which 
means a lack of available contacts within the app in the beginning), as people will be incentivized by 
receiving more rewards with a smaller userbase. 

Combining these two “killer features,” we can conduct a marketing campaign that will hit both 
the instant-messaging market and the cryptocurrency market, reaching the largest potential 
audience and helping the platform to gain a significant userbase. We expect that this approach 
has the potential to secure leading positions for the project in both markets. 

XIV. Monetization and revenue 

1. Monetizing Liberdyne 

We do not intend to monetize the Liberdyne messenger directly. Liberdyne is conceived as a basic 
platform for communication and payments and as the foundation of the entire Dynemix ecosystem, 
which is why we intend to keep it completely non-commercial. All paid services integrated into 
Liberdyne (e.g. SATAN, cloud storage) will be directly P2P and will bring no revenue to the 
developers. 

Unlike most products with a centralized architecture (e.g. WhatsApp, WeChat), in our case, the cost 
of supporting the application will be much less. 
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This is due to the fact that the operation of the system is secured by the users themselves (with P2P 
architecture), which eliminates the need to maintain powerful data centers to process huge flows of 
information. 

When it comes to the technical support of the infrastructure, developers play the same role as any 
other users and only during the starting period will the involvement of the developers be necessary. 
According to our estimates, we will need to run about 100 master-nodes to guarantee stable system 
performance. 

After attracting a sufficient number of users, if additional income is necessary to support the system, 
we may consider ways of monetization: 

 Adding additional services to the application that will be paid for by the users in dynes. 

 Charging a fee to service providers for their content distributed via the messenger. 

We see monetization, however, as a last resort and hope that we will be able to avoid it. 

2. Other projects on the Dynemix platform 

Most developers of cryptocurrency platforms are not involved in building the ecosystem around the 
platform. As a rule, they create basic state-transition software and delegate everything else to third 
parties. 

We may take another approach, and we do not exclude the possibility of participating in the 
development of the platform’s ecosystem, which refers to both the direct development of different 
services and the support of third-party projects. At this stage, however, we cannot reliably confirm 
our intentions, as it is not currently clear how large a set resources we will possess and how our 
priorities will be set. 

XV. Dynemix and scams 
Dynemix is not a scam. 

It is highly likely, however, that some unscrupulous actors may try to take advantage of the fact that 
we do not conduct a public token distribution before the mainnet launch. We highly recommend 
staying extremely cautious toward any announcements and offers of tokens committed on our 
behalf that are not directly confirmed on www.liberdyne.com. The project has no other official 
domain names, and no tokens will be available for distribution without prior notice on the website. 

If someone offers you dynes that were allegedly placed during the closed sale or obtained directly 
from a member of the team, be aware that it is undoubtedly a fraud attempt. 

http://www.liberdyne.com/

