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Dynemix is a blockchain platform of the next generation designed to 
become the first worldwide-adopted cryptocurrency capable of 
competing with conventional consumer-level payment infrastructure 
on equal footing and substituting it entirely eventually. 

Dynemix features a novel BFT consensus protocol, which was 
designed from scratch to meet the specific requirements of the 
system. A number of unique features introduced with the protocol 
allow the Dynemix blockchain to solve all major issues that current 
generation blockchains are facing and endow the system with the 
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decentralized algorithmic central bank, which is described in a 
separate paper. 
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I. Introduction 
In 2009, the first modern decentralized cryptocurrency, Bitcoin, was created. It was based on a 
distributed ledger called a blockchain. 

In 2014, a fundamentally new blockchain platform – Ethereum – was born. Unlike Bitcoin, it was not 
strictly a cryptocurrency and was not primarily meant to become just a way of payment or a storage 
of value, but rather to be a decentralized virtual machine (also often called a distributed Turing 
machine, since its state machine used the Turing-complete instruction set) for running various 
kinds of applications, including so-called “smart contracts”, which allowed value transfers and the 
automatic enforcement of other various types of obligations under multiple conditions. Native ETH 
coins of the platform were considered a “fuel” for these applications, and blockchain was used as a 
database for storing applications as well as all concomitant data (accounts, messages, transactions, 
states etc.). 

Most projects after Ethereum followed its footsteps and introduced variations of smart contract 
platforms with emphasis on different specific features mostly claiming to reach a better speed, 
scalability or lower fees, whereas the concept of an actual cryptocurrency, i.e. a decentralized 
payment system, was left for good. 

Some more recent projects tried to address the issue through the introduction of the concept of an 
algorithmic stablecoin. These projects, however, were poorly executed and didn’t cover the entire 
array of problems that needed to be solved to make the concept work. We can claim that to date, 
there is still to platform that is even remotely close to the embodiment of the initial ideas behind 
Bitcoin to become an actual decentralized cryptocurrency. 

We are here to fill this gap and finally introduce a decentralized payment system of the next 
generation capable of becoming the first mass-market cryptocurrency. To embody our vision, we 
endowed the platform with all necessary properties and developed unique solutions to known 
major issues. 

We can conditionally split the requirements for the ultimate cryptocurrency into four categories and 
address each of them separately: 

a) User experience. General audience is used to the level of convenience provided by the 
conventional fiat payment infrastructure. Current blockchains are far too inferior to trigger a 
substantial interest and raise a desire to switch to crypto. Our system must be designed so 
that users won’t feel a significant drop in convenience in comparison to credit cards and 
common banking apps. 

b) Decentralization. The system should be resistant to oligopoly control, censorship attempts 
and cartel formation. As well, the functions of system support and rewards for performing 
these functions should be distributed among as much participants as possible. 
Decentralization should not be sacrificed to a large degree for speed and scalability. 

c) Economic potential. The platform should be capable of transitioning from the initial 
speculative stage to the development of a real economy. To accomplish this, we should build 
not just an algorithmic stablecoin that is pegged to an allegedly stable exogenous currency 
but a fully-fledged decentralized central bank. 

d) Entry threshold. Most current blockchains feature a very sophisticated infrastructure, which 
requires a set of specific knowledge even for the most common usage. We should introduce 
our platform via a simple and user-friendly software and assure that all important functions 
are accessible through a coherently designed uniform interface. 

The following white paper contains the description of Dynemix blockchain, which incorporates a 
number of novel solutions for each of the issues addressed above. The economic model of Dynemix 
is described in a separate paper. The description of the Lyberdyne messenger, which will be used as 
a platform for the distribution of Dynemix, is also available as a separate paper. 
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II. Problem Statement 

1. Required technical features 

To accomplish our goals, at first, we need to address two of the stated features that we want to see 
in a perfect decentralized payment system: it should be sufficiently decentralized, and it should 
provide a user experience similar to existing centralized payment systems (or even better, if 
possible) to be able to offer serious competition. 

The properties required to accomplish these tasks are as follows: 

1) Guaranteed instant transaction processing 

In conventional centralized payment systems, any transaction sent to the network will be instantly 
processed by the operator, except when it does not fit the requirements (e.g. if the transaction 
amount exceeds the user balance) or a fault occurs. We should achieve the same properties in our 
blockchain system and design it in such a way that it can assure that all currently pending 
transactions are added to the next block. 

 

Current state of the problem: 

In Bitcoin, transactions to be included in a block are selected by miners at their own discretion. 
There is no guarantee that any particular transaction will be ever included in the blockchain. As 
conceived by the creator, miners are incentivized to add transactions to a block by obtaining the 
commissions included in each transaction. The protocol, however, contains no strict rules about 
transaction selection; hence, miners are free to produce even empty blocks if they wish (which led to 
the emergence of a practical problem called “spy mining”). 

Mostly the same situation can be seen in all widely known blockchain projects to date. Only the 
developers of DAG-based systems claim to provide processing of every transaction, but their design 
relies on altruistic behavior by participants, so it cannot be considered a proper solution to the 
problem in a Byzantine environment. Some blockchain developers also addressed the problem (e.g. 
Honey Badger), but no one fully provided the stated properties. 

2) Quick finality 

There should be no scenarios where users have to wait more than 30 seconds for a transaction to be 
completed. In centralized systems like Visa and MasterCard, it usually takes just a few seconds 
(although we should note that, even being confirmed, the transaction takes a lot more time to be 
finalized, but this does not significantly affect the consumer experience), so not many users will 
agree to wait much longer. 

Due to the distributed system’s specificity, we cannot match the speed of centralized systems 
(because we need to use a consensus protocol, which takes time to process and synchronize the 
data between peer nodes). We must, however, get as close as possible. 

 

Current state of the problem: 

In Bitcoin, a transaction that has been put into the blockchain is considered to be reliably confirmed 
after six blocks have been mined on top of it. This takes more than an hour, which feels like an 
eternity in comparison to credit cards. 
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Processing speed, however, is one of the parameters on which most developers concentrated later, 
so the majority of current-generation projects claim to reach finality latency close to that of 
centralized systems or even surpassing them. 

Although the Byzantine fault tolerant (BFT) consensus model, which is used in most recent 
protocols, allows reliable finality to be reached quicker, most of these claims are based on heavily 
centralized system architecture. Nevertheless, matching our targeted latency boundary is feasible 
for many recent BFT-style designs. 

3) High transaction processing rate 

According to Visa, VisaNet processes an average 1,700 transactions per second (TPS). If we want to 
create a system that can be as widely used as conventional means of payment all around the world, 
it should be capable of handling about 10,000 TPS. Moreover, this should be achieved within the 
main transaction database without second-layer technologies like payment channels. 

 

Current state of the problem: 

Bitcoin can process about 7 TPS the with the current block size, which is extremely insufficient. 
Though this is nothing but an arbitrary choice, in any case, Bitcoin’s architecture cannot provide 
thousands of TPS on-chain with an acceptable decentralization level. Developers try to implement 
second-layer solutions (such as Lightning Network), but in our opinion it feels more like concealing 
the problem rather than solving it. 

Since scalability has recently become the unofficial primary benchmark of a blockchain system’s 
advancement level, developers started a contest for the highest TPS claim. Most of these claims 
have nothing to do with real-life scenarios, as they are based either on the capabilities of second-
layer solutions (which are theoretically limited only by hardware and the bandwidth of all nodes 
combined) or they do not take into account the actual possible hardware and bandwidth 
capabilities of peer nodes in a practical environment. 

A realistic throughput boundary that can be practically achieved by non-sharded designs with the 
current state of hardware and communication infrastructure lies roughly between 1,000–5,000 TPS 
and can be pushed further only with the help of sharding. 

4) Free transactions 

In centralized systems like Visa and MasterCard, commissions are charged to payment-system 
participants, but ordinary consumers can perform most operations free (consumers usually pay 
banks only for cards issued and account maintenance). Therefore, for most users, transactions seem 
to be free of charge. Only those few who actually know how the system works understand that the 
vendor includes a transaction fee in the price of a service or good. 

A free-of-charge payment system can become very attractive both to users and to businesses, 
especially for microtransactions. The absence of commissions can give it a very strong advantage 
over other payment systems of either centralized or decentralized design. 

 

Current state of the problem: 

Bitcoin has rather high transaction fees, which grow even higher during periods of increased system 
load. This may be partly caused by the Bitcoin Core developers’ refusal to increase block size. Other 
altcoins of similar design will most likely face the same situation if they become similarly popular.  

Some more recent projects claim to provide free transactions, but in reality, they either feature 
different ledger designs (e.g. Nano, IOTA), which have their own significant downsides in 
comparison to blockchains, or the burden is simply shifted to third parties (developers, validators 
etc.). 
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5) Financial privacy 

Since blockchain is a public ledger, any person can view all of the transactions in the network. 
Hence, if the user discloses his ID to a third party, this party will instantly know the user’s current 
balance and entire financial history. This is a significant downside from the point of view of an 
average consumer who intends to use such a system for everyday payments, which means that the 
system should be capable of hiding transaction attributes and balances from the public. 

 

Current state of the problem: 

Surprisingly, first-generation projects are the only ones among popular platforms that offer banking 
secrecy compatibility, but this fact has a reasonable logic beyond it – the technical solutions offered 
are applicable only to UTXO based platforms and put an intense load on the system, which is why 
they are less compatible with the decentralized virtual machine concept. The most popular 
platforms that offer a means of hiding transaction attributes are Monero, Dash and Zcash. 

Not many developers of recent projects care about this factor, and some even state that anonymity 
should be excluded from cryptocurrency operations. We can state that no better solutions than the 
ones used in the first-generation blockchains mentioned above have been introduced to date. 

6) True decentralization 

We already have a working centralized payment infrastructure, and there is no need for another 
similar system that differs only in the presence of the word “blockchain” in the title. Since making 
the system more centralized is apparently a way of resolving the scalability issue, many developers 
have chosen this path. 

We do not support this approach and believe that decentralization is a crucial feature, which is why 
the system should be designed in a way that prevents any possibility of oligopolistic control and 
censorship attempts or any other possible kinds of coordinated selfish behavior. 

 

Current state of the problem: 

Bitcoin was the first working concept of a decentralized payment system, and its creator paid a lot 
of attention to the notion of decentralization. The very reason of Nakamoto consensus invention was 
the need to find a fault-tolerant and Sybil-proof solution for setting transaction timestamps without 
involving a trusted intermediary.  

Although the proposed solution seemed appropriate in the early stages, the appearance of mining 
pools dramatically changed the situation, and currently the major fraction of Bitcoin’s hashrate is 
controlled by just a few actors. The oligopolistic trend shows that the PoW concept is far from 
perfect in terms of providing decentralization, not even mentioning other known issues, such as 
AsicBoost. 

Since that, most developers have concentrated on scalability and speed issues, trying to provide as 
many TPS as possible. The easiest way to speed up a decentralized system is to centralize it (thereby 
reducing its security as well), which is the path most projects followed. We can see a clear trend of 
moving back to something that looks more like client-server architecture, while pretending to be a 
peer system. 

That has led to the creation of pseudo-decentralized systems, where instead of one trusted 
processing party, blocks are formed by a limited group of pre-appointed validators, thus making 
these systems not much less centralized than Visa or MasterCard. 

To date, we can state that the overall situation with decentralization among the majority of recent 
platforms is very sad, despite the fact that the decentralization concept is actually the very reason 
for cryptocurrency technology’s existence. 
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2. Overcoming entry threshold 

After we create a system that is perfectly capable of being a consumer-level payment platform, we 
will face another problem: how to spread such a system among a wider audience. 

The crypto community today is a rather closed system of professionals and enthusiasts that grows 
at a moderate rate. One of the main obstacles to the rapid growth of the number of people involved 
in the crypto community, in our opinion, is a high entry threshold caused by the following factors: 

a) The complexity of use 

Very specific knowledge is required to use the existing tools. Not all IT professionals, to say 
nothing of inexperienced users, understand the mechanisms of cryptocurrencies 
(cryptowallets, public and private keys, light and full clients, smart contracts etc). Ordinary 
users lack access to a simple and understandable product that would allow for the use of 
cryptocurrency in two clicks. 

b) The need to invest fiat funds 

To obtain crypto coins, an ordinary person first needs to understand how the exchange service 
works and second needs to spend a certain amount of fiat money. One may try to obtain 
cryptocurrency by mining, but nowadays mining has turned into a professional activity that is 
absolutely impractical without special knowledge, experience and significant investment. 

Considering that cryptocurrencies face strong prejudice created by media among the general 
audience, the risk of losing money mostly prevails over the audience’s curiosity. 

c) The lack of real use scenarios 

Cryptocurrencies are mostly used as an investment tool, and the real economy within the 
cryptocurrency environment is just beginning to develop. The volatility of the exchange rate 
does not help the development of the real economy either, but this does not seem to bother 
many developers, who are well enriched from bubbles in the stock market. As for the users 
who are not interested in investing their savings, most cryptocurrencies cannot offer them any 
relevant methods of use. 

As a result of these obstacles, many people unrelated to the IT industry refrain from using 
cryptocurrencies, despite the fact that they may have an interest in them. In fact, the money 
decentralization concept introduced by Bitcoin is beneficial for the general audience and not 
only for geeks, but there is too much confusion caused by presenting Bitcoin as a bubble and 
a financial scam by media. Combined with the other mentioned threshold factors, this heavily 
reduces the potential for cryptocurrencies to proliferate. 

Having assessed all of these factors, we came to the conclusion that if we really intend to introduce 
a cryptocurrency as a payment instrument for the consumer market, we must present not a mere 
blockchain protocol but a complete product on top of the protocol with the possibility of integration 
into a convenient ecosystem. If we simply create a technical platform, we will face the same entry 
threshold that the users of other cryptocurrencies are forced to overcome. In this regard, for the 
cryptocurrency to accomplish this task, a basic platform app should be created that will be capable 
of becoming a popular product itself, gaining interest among users regardless of the presence of an 
integrated cryptocurrency. 

We decided to incorporate Dynemix into the Liberdyne messenger to solve the issue of the entry 
threshold. In addition to being coherent with the peering principles upon which blockchains are 
designed, the messenger also incorporates a technical solution for helicopter coins that allows us to 
introduce a breakthrough model of a decentralized central bank and incorporate powerful 
marketing features that can greatly increase the rate of the platform’s growth. 
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III. Dynemix Cryptocurrency Platform 

1. Brief overview 

Dynemix is a decentralized, permissionless, account-based blockchain system powered by a unique 
Proof-of-Stake BFT consensus protocol. 

Dynemix is designed to achieve one goal – to become the first widely adopted decentralized means 
of payment (commonly called a cryptocurrency), compete with conventional centralized payment 
infrastructure on equal footing, and even substitute it eventually. 

Dynemix operates in a symbiotic relationship with the Liberdyne messenger, which allows it to 
introduce features not previously available and to progress toward the stated aim. 

Dynemix features a breakthrough economic model of a decentralized algorithmic central bank. 

To achieve the declared goal, Dynemix is endowed with the following features: 

a) Transactions are free. 

Unlike other blockchain systems, which feature market-determined fees for all transactions, 
common transactions in Dynemix are free. Fees are charged only for business-related 
transactions that require multi-outputs. 

b) All transactions are finalized within 6 to 16 seconds after being sent to the system. 

Unlike other blockchain systems, which allow transactions to be added to the block at the 
discretion of the block producer, every transaction broadcast into the Dynemix network is 
added to the next block, which is instantly finalized. There is no need to wait for additional 
confirmations. 

c) Dynemix scales to 10,000 TPS and higher. 

Our sharding solution allows Dynemix to scale up as much as needed. The system can scale to 
10,000 TPS and beyond with moderate hardware and bandwidth requirements. 

d) Dynemix is highly decentralized. 

Unlike many recent blockchain projects, which solve the scalability issue by adopting highly 
centralized architecture, Dynemix is designed specifically to provide the highest level of 
decentralization, which surpasses even the level of classic PoW blockchains, such as Bitcoin. 

e) Dynemix is highly secure. 

With the help of a two-layer security model, Dynemix manages to increase scalability without 
the need to sacrifice security. 

f) Dynemix can be minted on a common PC at home. 

Due to its excellent optimization, the use of sharding technology and the new consensus 
protocol, it is possible to run a full node on common home-class hardware. No professional 
hardware is required. 

g) Dynemix introduces a new economic model. 

The system features a unique coin issue and reward distribution system that provides a 
solution to the problem of economic development. 

h) Dynemix is compatible with financial privacy. 
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Dynemix is designed to use a new cryptographic solution that encrypts transaction data and 
can allow financial privacy to be provided to all users. 

i) Dynemix solves the entry-threshold issue by being integrated into Liberdyne. 

Dynemix is integrated into the Liberdyne messenger to provide users with a more familiar 
experience. Newcomers do not have to study the peculiarities of cryptocurrency technology to 
start using Dynemix. Instead, the user only needs to install Liberdyne and start using a familiar 
type of app that happens to have additional functions, which are available through a simple 
and intuitive interface. Minting functions are set up automatically, so the user does not need 
to do anything at all. 

The combination of these features makes Dynemix the ultimate blockchain payment platform and 
a true breakthrough in cryptocurrency technology. 

2. Data structure of Dynemix 

Dynemix is based on a perpetually growing transaction ledger called a blockchain. Dynemix 
blockchain consists of a sequence of master-blocks that are added in the linear order. 

Unlike most other blockchain systems, participants in Dynemix can operate not only directly with 
complete data blocks but can also employ a simplified data structure, which is derived from blocks 
and called a quilt. 

1) Blockchain – master structure 
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Essentially, each master-block represents a collection of shard-blocks and contains the following 
data: 

• the hash of the previous master-block; 

• a set of shard-blocks; 

• a set of minters’ signatures for shard-blocks. 

Each shard-block contains: 

• the hash of the previous master-block; 

• a set of transactions. 

All data is organized into a hash tree. 

2) Quilt – derived structure 

Quilt is designed to provide better optimization and scalability. Operating in the quilt mode is most 
efficient in the case of balances’ homomorphic encryption implementation, which is the particular 
setting for which quilt was designed. Even without encryption, however, quilt can provide an 
increase in performance, although the result is not as impressive as in the specified case. 

In the early stages, quilt will not be engaged, and Dynemix will fully operate in the blockchain mode, 
which assumes the propagation of complete data blocks among all nodes. 

At a certain point, however, balance encryption implementation should be considered in order to 
comply with financial privacy standards. The system was initially designed to provide a smooth 
subsequent transition to an encryption scheme. 

Balance encryption will inevitably affect performance. The weight of transactions and 
computational overhead will dramatically increase, thereby possibly dropping throughput on the 
blockchain layer by an order of magnitude. To partially compensate for the performance decrease 
while maintaining the desired level of scalability and decentralization, full nodes will be allowed to 
operate with a pruned data structure that is derived from the underlying blockchain. 

Once minters of a shard construct a valid shard-block, they derive a data structure called a patch 
from the newly constructed block. While the shard-block contains transactions with all attributes 
included, the patch contains only changes of the state that are caused by transactions. The hash of 
the patch is included in the hash tree of the shard-block. 

At the master consensus stage, instead of exchanging complete shard-blocks, minters exchange 
patches and partial hash trees of shard-blocks, along with signatures. Thus, after reaching a master 
consensus, each minter will now possess a complete set of patches, which form a quilt. Essentially, a 
quilt represents the set of changes applied to the system state by a master-block of a given height. 

We assume that by the start of each round all minters will possess the current state of the system. 
Upon applying a quilt, minters will obtain a new state. Operating with quilts allows a significant 
decrease in computation and communication overhead that occurs after the shard consensus 
subslot. 

It can be easily observed that once full nodes begin operating in the quilt mode, the system will 
become less secure, as the validity of the state change is not verified beyond a shard consensus. The 
inevitable loss in security is circumvented by the presence of authorized master-nodes that perform 
fishermen functions. 
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For a more detailed description of the overall security model, please refer to the next chapter. 

Although Dynemix will initially be launched without quilt, the following description of the system 
accounts quilt’s implementation as the final design that the system should obtain. Please note 
that some of the described functions of the system will not initially work completely in 
accordance with the description below. 

3. Accounts in Dynemix 

1) Dynemix Namespace 

A user can interact with the Dynemix system on two levels: 

• With the help of public/private key pairs. This level resembles the approach used in most 
blockchain systems. Capabilities on this level are limited to issuing transactions. 

• With the help of a registered account. Most actions within the Dynemix/Liberdyne system 
require registration. 

During the registration process, not only are key pairs generated, but a username is also attached to 
the public keys. The entirety of all unique usernames chosen by the users during a registration 
forms the Dynemix namespace. 
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Registration is a special type of a transaction. Once a user registers, it is impossible to alter or delete 
the username from the blockchain. That prevents any censorship attempts in the namespace 
service. 

Registration is implemented for the following purposes: 

a) Improving user experience 

The username database is stored within the blockchain, which guarantees the possibility of 
resolving a username to the public key at any time. Hence, any interactions within the system 
(for example, sending coins) can be performed via a username. This makes the system simpler 
and easier for users to understand. 

The namespace can be also used by other projects within the Dynemix ecosystem or even 
third-party centralized services. For example, by being combined with integrated 
decentralized cloud storage, the namespace can allow users to create different types of 
content that can be accessed by various services, apps or other users via the username. 

b) Statistics generation 

Since the system is completely decentralized, it is difficult to determine even the approximate 
number of users. The number of public keys with non-zero balances may help, but users can 
easily generate an infinite number of one-time keys and split their coins among them. 

Registering multiple accounts does not make much sense, since users could still employ 
different public keys as separate wallets but have only one registered account at a time. 
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c) Spam protection 

This feature is mostly useful for the Liberdyne messenger, as well as other potential projects 
based on the Dynemix platform, but it can be also used to counter the transaction spam issue, 
if such occurs. 

Initially, we plan to support free registration without any restrictions (except for CAPTCHA 
protection from bot registrations). In the case that we face significant trouble with spam and 
undesired content distribution, it is possible to complicate the registration process to make 
the Sybil strategy for malicious activities more resource-intensive. 

2) Verified namespace 

Since Dynemix is a decentralized system and the process of registration is decentralized as well, it is 
impossible to use standard methods of cyber-squatting resistance. 

To solve the problem of cyber-squatting it is reasonable to add a centralized custodial service – the 
verified namespace. 

The verified namespace works similarly to verified accounts in centralized social networks (e.g. 
Instagram and Facebook). Once a publicly known user wants to get a confirmation mark indicating 
that a particular account belongs to him, he will provide the requested information and get a 
verified username. These usernames will form a separate namespace and will have priority over 
identical usernames from the general namespace in some scenarios. 

Verification can be also used to add a legal provable binding between a Dynemix account and a 
certain entity (a sort of certification), thus allowing entities that wish to use the platform for business 
purposes to gain more trust from users. 

Another critical feature of the service is its ability to restore an account in case of key loss. Account 
names may be valuable in themselves as a marketing tool, especially for large companies that make 
significant investments in brand marketing. The risk of irretrievable loss of the account may 
discourage such companies from using all of the system’s capabilities. Custodial account delegation 
may solve this problem and provide the necessary enforcement of the ownership of the account. 

4. Dynemix units – dynes 

Dynemix units are called dynes. Dyne is a derived unit of force in the CGS system of units. Currently, 
the term is barely used, so we will likely be able to give the word a second life and at the same time 
avoid confusion. 

We like the word for its association with power and, besides, it just sounds cool. 

Dynemix is not designed to support Turing-complete smart contracts, and hence tokenization will 
not be supported either. Dynes will be the only units circulating within the Dynemix ecosystem. 

Adding certain on-chain derivatives may be considered, however, if the platform’s economy requires 
it during the evolution process. It is difficult to foresee the path of development at the initial stage. 

Dynes are utility units, which bear no other function except being a universal medium of exchange 
and are not backed by any real assets or obligations. Within the platform, dynes can be also used as 
stakes in the minting process. 

The initial issued volume will reach 1,000,000,000,000, or 1012, dynes. 

The minimum fractional unit is equal to 0.000001, or 10-6, dynes. 

Starting from the second master-block of the blockchain, new dynes will be issued as rewards for 
system support with each new master-block. 
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5. Dynemix transactions 

1) Transaction types 

Account transactions 

Register Registers a new user account 

Register verified Registers a new verified account 

Recover Allows public keys to be reset with the help of the master key (changing 
the password or master key) 

Coin transfer transaction 

Transfer Transfers coins between public keys 

 

Service transactions 

Stake/unstake Stakes or unstakes a specified number of coins for minting 

IMIN Indicates readiness to participate in the minting of the next block 

Proof of fraud Incriminates a minter in an attempt at fraud, slashes the minter’s stake 
and restricts him from further participation 

Administrative transactions 

Administrative Allows special administrative measures to be applied in the case of their 
adoption 

2) Spam protection 

Since we follow the concept of free transactions, it raises the problem of spam – instead of sending 
one transaction with the desired amount (say, 100 dynes), a malicious user could deliberately send 
100 transactions of one dyne each, hence creating an unreasonable load on the system. To solve this 
issue, we adopt several restrictive measures: 

a) Limiting the number of transactions 

The system will accept only one transaction from each address in each block. This limitation 
will not significantly diminish the user experience, since Dynemix has a 10-second block time, 
and in very few cases will a user need to make transactions faster than that. If the user needs 
to make several consecutive transactions, he may send them to the network and wait until 
they are processed. 

Business scenarios often require multiple transactions to be processed from one account at a 
time, however. To meet the needs of business accounts, Dynemix supports multi-output 
transactions. To protect the system from spam, fees are charged for each output of such 
transactions. Unlike most blockchain systems, which feature market-defined commissions, 
fees in Dynemix are predefined to improve the user experience. 

b) Limiting the transaction amount 

Another antispam measure is limiting the minimum amount of a user-generated transaction 
to one dyne. In case the total market cap grows high enough, this limit can be lowered to 
meet user needs. 
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In case these measures prove insufficient, additional restrictions can be applied, including but not 
limited to: 

a) Limiting the daily amount of free transactions 

According to the gathered statistics, it is possible to estimate the daily average number of 
transactions and limit free transactions to a certain number that would satisfy the needs of 
most users. 

b) Charging monthly fees 

We can set monthly fees for using the system. When a user issues his first transaction in a 
month, it should contain a predefined service fee, which is obtained by minters. After paying 
the fee once, the user can freely issue any number of transactions until the prepaid period 
expires. This approach resembles the conventional banking experience, as users usually pay 
annual or monthly card issuance and service fees to banks, which is why this approach should 
be familiar to most users. 

6. Financial privacy 

Most cryptocurrencies disclose transaction data, i.e. the number of coins sent, the sender and the 
recipient. Since we are creating a platform for everyday payments, it would be advisable to solve this 
issue and ensure compliance with banking secrecy. A system that allows anyone to see the current 
balance and the entire payment history of any user is obviously less attractive to consumers than a 
system that can assure their financial privacy. 

When we started the project, several platforms (Monero, Zcash, Dash etc.) offered solutions that 
allowed the amount and/or the sender and/or the recipient of a transaction to be hidden. 

The problem was that all those platforms were UTXO-based blockchains, while Dynemix was meant 
to become an account-based system (a UTXO model requires higher traffic and storage overhead, 
which is intolerable for a system that is meant to scale up to thousands of TPS). Besides, the existing 
solutions drastically increased the transaction weight, RAM use or computation time. 

No balance-hiding solution for account-based blockchains existed at the time, which is why a 
completely new approach was required. 

Financial privacy in relation to blockchain consists of two conditions, each of which requires a 
separate technical solution. 

1) Hiding transactions’ balances 

We believe that this condition is of the utmost importance – hiding transactions’ amounts allows for 
the hiding of account balances, which are sensitive information that the majority of users would not 
want to be disclosed. 

To solve this issue in an account-based system, we can use homomorphic encryption, as it allows 
computations on the ciphertext, generating an encrypted result which, when decrypted, matches 
the result of the operations as if they had been performed on the plaintext. 

Instead of storing balances and transaction amounts as plaintexts, we can store encryption keys and 
encrypted balances. 

Assume Alice wants to send 𝑥 dynes to Bob. She also wants her balance and the transaction amount 
to be hidden from Eve. As our blockchain is public, the only way to achieve this is to introduce 
encryption. 
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Instead of subtracting 𝑥 from 𝐴 and adding 𝑥 to 𝐵, roughly speaking, we subtract encrypted 𝑥 from 
encrypted 𝐴 and add encrypted 𝑥 to encrypted 𝐵. 

Of course, Alice and Bob have different encryption/decryption keys, which is why 𝑥 should be 
encrypted twice (with Alice’s key and with Bob’s key) to be able to be subtracted from Alice’s 
balance and added to Bob’s balance. 

Then the following problem arises – Alice should prove that: 

• both ciphertexts encode the same value; 

• this value is positive; 

• her new balance is at least non-negative. 

To achieve this, we need (non-interactive) zero-knowledge equality and range proofs. 

After a minter receives the transaction, he checks the validity of the attached proofs and performs 
the subtraction of 𝑥𝐴 from Alice’s balance and the addition of 𝑥𝐵 to Bob’s balance. 

If Alice wishes to perform a transaction with the disclosed amount, she can easily do so. This may be 
necessary if Alice wishes to leave evidence of a transfer of a certain amount to Bob in the blockchain. 
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2) Hiding recipients’ IDs 

This condition is also important, because disclosing the recipient of the transaction allows for the 
identification of connections between users, but we suppose that this is not as crucial for most 
consumers as is balance hiding. 

Since Dynemix supports multi-output transactions and given homomorphic encryption 
implementation, the solution to this issue is trivial – instead of sending a transaction with one 
output (Bob’s account), Alice sends a transaction with multiple outputs, one of which is Bob’s 
account and the others are randomly chosen registered accounts. The amount transferred to 
random accounts is equal to zero, while the amount transferred to Bob is the actual desired sum. 

From Eve’s point of view, Alice sends an unknown number of coins to multiple recipients, and Eve 
cannot conclude that either of them are real recipients rather than just random extras, nor how 
many coins each of them received. 

Alice can arbitrarily choose the number of extra outputs, assuming that the more outputs she 
includes, the more she confuses Eve, but at the same the more she must pay (as fees are charged by 
minters for each additional output’s processing). 

Alice can also issue multiple transactions with multiple outputs, thus hiding the mere moment of 
the actual transaction’s issuance. The degree of obfuscation depends only on the number of dynes 
Alice is ready to spend as fees for extra outputs. 

A significant advantage of this approach is its high customizability on the client level. Since no 
patterns are predefined by the protocol, it complicates analysis attempts for a potential adversary. 

Interaction obfuscation turns out to be a paid feature, but it is justified by the excessive load put on 
the system by such transactions. We suppose that balance encryption will be sufficient for most 
users and that multi-outputs will be used infrequently. 

3) Problems of proposed solution. 

Before homomorphic encryption can be implemented, we must solve several major problems that 
arise with the proposed solution. 

a) Constructing suitable ZK-proofs 

Although homomorphic encryption theoretically can allow our standards to be met, as for a 
single account only an encrypted balance and public keys must be stored on-chain, thus 
saving a lot of space, the problem lies in the construction of the required ZK-proofs. 

The only currently available working solution is an additive modification of the El-Gamal 
encryption scheme, which requires calculating a discrete log in order to decrypt a balance. 
This task is NP-intermediate, and thus the solution is completely impractical. At the same 
time, constructing ZK-proofs for much more convenient cryptosystems (e.g. Paillier) could 
require a lot of time and resources for proving and verifying, and the proofs could be much 
larger than expected. 

We do not find it reasonable to use any solution that cannot allow a transaction to be quickly 
constructed even on a mobile device, which is why currently available concepts seem 
inappropriate. To develop a practical implementation that can meet our needs, further 
research is required. We are developing a system with a foundation for the quick and painless 
implementation of homomorphic encryption (the architecture is initially optimized for 
operation with encrypted balances) when a suitable solution is fully developed. We cannot 
reliably claim when this may happen, however. 

We can note that homomorphic encryption and ZK-proofs as technologies are still in their 
infancy and improved solutions have yet to be developed. We should also note that the 
technology is relevant not only for blockchain systems but to various spheres of the computer 
industry, which raises our expectations for the potential rate of progress. 
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For example, hardware giants announced RAM-encryption technologies that can provide 
more security to cloud computing, but the currently presented solutions still feature 
computations with raw data on the CPU layer. Building a fully secure VM would require fully 
homomorphic encryption and computations directly on the encrypted data. For this reason, 
we can expect low-level optimizations that will help us build a more scalable system. 

b) The high risk of hidden attacks 

The encryption of all account balances obstructs the detection of attacks. 

If the adversary exploits a bug that allows the creation of new coins in an arbitrary amount, it 
can have a devastating effect on the system. When all balances are publicly observed, it will 
likely be detected quickly, and countermeasures will be applied (a rollback, in the worst case). 
When balances are encrypted, however, it may stay unnoticed longer, which is an 
unacceptable outcome. 

Although the state transition remains verifiable and even in the presence of master-nodes, 
which are expected to help keep the system secure and ensure the sufficient level of security, 
we suppose that it would be dangerous to implement the described technology on the 
platform scale until it was redundantly researched and tested. 

Any possible additional measures to mitigate the stated risks should be also considered, even 
if they come at a cost. 

7. Dynemix state transition 

As stated, a cryptocurrency platform that can meet all of the requirements to compete with 
centralized payment systems cannot be based on any existing protocol for reasons of technical 
limitations. We had to design our system from scratch and apply many unique features to achieve 
our goal. 

More details will be available in the technical documentation. Herein, the protocol will be described 
in broad strokes, and its most important features will be explained in the next chapter. 

1) Stakes 

a) Staking 

Everything starts with stakes. Any registered user can send a stake transaction with an 
arbitrary amount, thus indicating his intention to participate in block production. 

As we intend to democratize block production and attain a high level of decentralization, we 
cannot set a high minimal stake threshold. Requirements that are too low, however, can lead 
to abuse and negatively affect security, which is why a point of balance should be determined. 

A stake transaction’s amount is publicly visible; hence, minter candidates have to partially 
disclose their balance to the extent of the stake amount. 

b) Restaking 

Since we initially assume that minting will be performed not only by users who adhere to a 
professional approach but also to a substantial extent by common users with consumer-level 
hardware, we cannot predict the percentage of stakeholders with 100% uptime. Although we 
implemented an adaptive algorithm for minter window selection that accounts for an average 
proportion of the available stakeholders, if the dispersion grows too high, it can have a 
negative effect on several properties of the system. 

If we encounter such a problem, it may be solved by setting a TTL for stake transactions or 
suspending the stake if the stakeholder skips a block. In this case, stakeholders will need to 
restake intermittently to indicate their availability. 
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c) Unstaking 

If the user wishes to unblock the staked dynes to be able to spend them, he sends an unstake 
transaction. The staked amount becomes spendable after two blocks are minted above the 
block that contains the unstake transaction, which makes Dynemix more minter-friendly than 
other PoS systems, as the stake in the latter is typically blocked for a long period of time for 
double-spend protection. 

2) I’m in 

 

Block 𝐵𝑛−2 

In a pseudorandom manner with the master-block’s hash as a random oracle, a set of eligible 
minter candidates for block 𝐵𝑛 is selected from the array of accounts with active stakes. The 
stake size correlates with the probability of being selected for minting, as the weighted 
sampling algorithm is employed. 

Block 𝐵𝑛−1 

Stakeholders picked by the algorithm send special IMIN transactions to the minters of block 
𝐵𝑛−1 to indicate that they are ready for minting. This is required to exclude inactive 
stakeholders and ensure that during the minting of block 𝐵𝑛 most of the assigned minters 
within each shard will be available. 

IMIN transactions provide a solution to the problem of unavailable stakeholder nodes, which are 
considered faulty in terms of the consensus algorithm. 

Since we are assuming that a substantial proportion of stakeholders will consist of ordinary users 
whose nodes may be unavailable much of the time, there is a serious risk that liveness may be 
threatened by a large number of inherently faulty nodes. This is why an algorithm that verifies 
availability immediately before the minters are designated is required. The solution is detailed in 
the next chapter. 

3) Sharding 
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Block 𝐵𝑛−2 

According to the average number of transactions per block in a recent period, the optimal 
number of shards that the system will split into for minting block 𝐵𝑛 is determined. 

Block 𝐵𝑛−1 

According to IMIN transactions, a minters’ committee for block 𝐵𝑛 is formed. 

Block 𝐵𝑛 

The minters’ committee is algorithmically sorted by shards and split into a set of shard 
committees. 

Since all information required for sharding is contained in blocks 𝐵𝑛−2 and 𝐵𝑛−1, the shard 
committee’s designation for block 𝐵𝑛 becomes consistent throughout the network after block 𝐵𝑛−1 is 
propagated. 

If the system splits into 𝑠 shards and 𝑖 IMIN transactions were recorded in block 𝐵𝑛−1, then each 

shard committee consists of 𝑖

𝑠
= 𝑚 minters. The size of the window of stakeholders selected in block 

𝐵𝑛−2 is algorithmically adjusted to maintain the required number of shards with constant 𝑚. In 
Dynemix, 𝑚 = 10 (although it may be subject to adjustments if needed). 

Determining 𝑚 is a security/overhead trade-off. The more 𝑚 we set, the more traffic overhead 
each minter node will suffer, which makes sharding less efficient, but at the same time, the more 
security will be provided, as the chance of controlling the supermajority in the shard for the 
adversary statistically decreases. 

4) Collecting transactions 

After the shard committee is appointed, minters collect incoming transactions. 

Transactions are assigned to particular shards according to the public keys of the issuers (in the case 
of registration transactions, according to the username). Upon receiving block 𝐵𝑛−1, each node in the 
network knows to what shard committee any given transaction in the pool is assigned. 
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To ensure fast verification, transaction issuers or other nodes that store transactions should send 
them directly to all minters of the corresponding shard. If the nodes behave accordingly, under 
perfect conditions all minters of the shard committee should have the same set of transactions by 
the end of the subslot. 

Still, even if the transaction senders try to multicast transactions to all assigned minters, due to the 
network delays and imperfect time synchronization, the sets may partially vary. To ensure the 
consistency of the transaction set, minters synchronize the collected data. 

5) Synchronizing the transaction set 

During this phase, each minter multicasts their 
collected data to other members of the shard 
committee. 

Each minter signs the hash of the collected 
transaction set and submits the set to other 
members of the shard. By the end of the time slot, 
the transaction set should become consistent 
within the shard. 

Minters may behave Byzantine and send 
different versions of the transaction sets to 
other members of the committee or submit no 
data at all. This situation is managed in the 
next phase. 

6) Verifying each other’s transaction commitments 

To reach a Byzantine agreement, honest nodes should possess identical transaction sets. Since 
Byzantine actors in the previous phase can act inconsistently, an additional round of data exchange 
is required. 

During this subslot, minters mutually exchange hashes of all the transaction sets received from 
other minters to verify that each member of the committee has the same total set available and 
that no one is trying to commit fraud. 

If all minters are honest and non-faulty, each will get the same number of identical hashes, which 
means that the transaction set is consistent within the shard and that minters can proceed to the 
next phase. If there are Byzantine actors among the minters, however, additional actions are 
required. 

Assume a simplified model wherein we have a shard committee of three minters. Alice and Bob are 

honest, Chuck is Byzantine, and consensus is reached by 2

3
𝑚. 

a) Chuck commits nothing 

 

Alice and Bob exchange messages stating 
that Chuck has not committed anything. 
Since they exchanged their transaction sets 
in the previous phase, they can proceed to 
the next phase. 
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b) Chuck commits a set to Alice and nothing to Bob 

 

Bob receives a hash of Chuck’s set ℎ𝐶 from 
Alice, and since he did not receive the set 
from Chuck directly during the previous 
phase, he requests Chuck’s set from Alice. 
After Bob receives it, the transaction sets 
become consistent, at least between Alice 
and Bob. 

Bob may suspect that Chuck is an adversary, 
but since Chuck’s malicious intentions are 
not provable, as he may simply have 
experienced connection problems in the 
previous phase, Bob does not apply any 
punitive measures. 

Alice may suspect that Chuck is an adversary, but from the other side, Bob could also be an 
adversary trying to frame Chuck. Alice cannot reliably determine whether each of the 
assumptions is true, and she does not apply any punitive measures either. 

c) Chuck commits sets to Alice and Bob, but the sets are not identical 

 

Bob receives a hash of Chuck’s set ℎ𝐶𝐴 from 
Alice and finds that it differs from the hash 
of Chuck’s set ℎ𝐶𝐵 that he has received from 
Chuck. Bob requests Chuck’s set 𝐶𝐴 from 
Alice, and Alice, having come to the same 
conclusions, requests 𝐶𝐵 from Bob. After 
they exchange Chuck’s sets, the 
transactions sets become consistent 
between them. 

Now, as Alice and Bob both know that 
Chuck is the adversary, each of them creates 
a special proof-of-fraud transaction, accusing Chuck of fraud, with both signed hashes of 
Chuck’s sets (ℎ𝐶𝐴 and ℎ𝐶𝐵) attached as a proof, and adds it to the transaction set. If the shard-
block proposed by Alice and Bob wins the consensus round, Chuck’s stake is slashed. 

The simplified model described does not take into account the possibility of multiple minters’ being 
controlled by the adversary, who can abuse the situation described in paragraph b by sending 
messages to some minters too slowly, thus keeping the transaction set inconsistent by the end of 
the subslot. 

To counter this opportunity and prevent the adversary from delaying the consensus, another rule is 
adopted – minters request the set only if it is known by at least 𝑓 + 1 other participants by the 
beginning of the subslot. Otherwise, the set is ignored by all committee members. 

7) Shard-blocks and the shard consensus round 

After all minters within the shard synchronize the known transactions, each of them processes 
transactions and builds a shard-block that contains the whole synchronized set. 

Minters exchange signed hashes of the shard-blocks to reach a consensus. Dynemix uses a 
synchronous authenticated multivalued Byzantine agreement model. If the required threshold of 
replicas proposes identical shard-blocks within the time subslot, this block is considered approved 
by the shard committee. 
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Minters can propose only one shard-block during this phase, which is why they should build the 
same block as most other minters probably will; otherwise, the consensus will not be reached, and 
nobody will receive a reward. The optimal strategy to reach consensus is including all known 
transactions in the shard-block. 

If a minter proposes two different shard-blocks, he is accused of fraud by the honest minters and his 
stake is slashed. 

In Dynemix, the shard consensus threshold is set to > 2

3
𝑚. 

As a Byzantine agreement protocol used in Dynemix can tolerate 𝑓 faulty players of 𝑛 > 2𝑓 
participants in a (weakly) synchronous communication setting, the required majority value 𝑐 in a 
committee of 𝑚 minters can be set within 𝑚

2
< 𝑐 ≤ 𝑚 . Setting 𝑐 is a safety/liveness tradeoff. The 

more 𝑐 we set, the more resources the adversary must possess to approve a deviating shard-
block or fork the blockchain if synchrony is not held, but, at the same time, the fewer faulty 

minters can be tolerated. We have chosen 𝑐 >
2

3
𝑚 for shard consensus as an estimated point of 

balance. This value can be changed within the stated boundaries if needed. 

8) Shard-block exchange 

After consensus is reached in the shard, minters establish connections with other shard committees 
and mutually exchange patches of shard-blocks (before the quilt layer is implemented, minters will 
exchange complete shard-blocks) with them. After the exchange is complete, all external minters 
request hashes of the shard-block from all shard committee members to ensure that nobody 
behaved in a Byzantine way. 

If Byzantine behavior was detected (e.g. somebody signed different versions of a shard-block), 
honest minters issue a proof-of-fraud transaction in the next block to penalize the malicious actors. 

9) Master-block and master consensus round 

After each minter has collected all patches (or complete shard-blocks), each builds a quilt and 
constructs a master-block. Minters exchange hashes of the master-block to reach the second BA 
agreement. 

The master consensus threshold in a minter committee of 𝑀 members is set to 3

5
𝑀. 

IV. Dynemix Explained: Features And 
Tradeoffs 
Now that we have briefly described the architecture of Dynemix, we should explain why we 
implemented the mentioned solutions and how they help us reach the stated goal of building a 
next-generation blockchain payment system, as well as what tradeoffs we must accept on the way 
to this goal. 

1. Setting 

Dynemix was developed to operate in a specific setting, which should be outlined to clarify certain 
features of the protocol. 

In the beginning of the white paper, we stated a set of properties that we strive to obtain. One of the 
essential features is a high level of decentralization, which requires the following condition: 
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• The system should be designed to let the maximum number of users be 
involved in the system’s support processes 

We intend to go back to basics and design a system that can be operated by common users with 
the help of home-class hardware, which corresponds to the original ideas of Satoshi that were 
embedded, but not embodied, in Bitcoin. 

1) Honest nodes 

The first difficulty we face is the need to revise the notion of an honest node. 

In a conventional setting, honest nodes not only refrain from doing anything that goes against the 
rules but also refrain from not doing something that is expected of them. In relation to many BFT-
style blockchain protocols, this refers to being constantly available at least for the nodes known as 
current stakeholders (or any other types of nodes that are expected to participate in a state 
transition). In the case that an average number of stakeholders who are offline exceeds the 
threshold, such protocols will eventually lose their liveness. 

The developers of Algorand relaxed these requirements and introduced the notion of “lazy honesty,” 
which refers to users who honestly follow all their prescribed instructions when they participate in 
the protocol but are asked to participate to the protocol only very rarely (e.g. once a month) and 
with advance notice. 

This notion does not fit our setting either. If we assume that users can participate in minting with 
home PCs, we cannot expect them to hold any particular uptime – users can arbitrarily go online 
and offline at any moment, regardless of being selected for minting in any particular round, which is 
why we need to relax the boundaries of availability even further and operate with the notion of 
irresponsible honesty. 

Honest but irresponsible nodes are actors who do not commit any actions that deviate from the 
protocol but who can stop participating at any arbitrary moment and hold any arbitrarily long (up to 
infinite) period of unavailability. 

The described notion seems to have a lot in common with the sleepy model of consensus 
researched by Pass and Shi. Their model is abstract, however, and does not allow to easily derive 
particular practical conditions for which we are designing the protocol. To avoid confusion, we 
use a different term, which also places more emphasis on the partially subjective nature of the 
problem. 

Although the notion of irresponsible honesty seems to fit our setting, to provide a more precise 
description of the targeted practical environment, we should further refine the model and introduce 
the notion of weakly responsible honest nodes. 

In terms of Dynemix, weakly responsible nodes are actors who can arbitrarily refrain from 
participating even if asked to participate, but who, once accepted, hold some expected uptime, 
during which they perform all of their instructions. We assume that the more time passes since the 
node committed its consent to participate, the more likely it is to lose availability. 

What does this all mean in practice? We assume that the vast majority of users will use the 
Liberdyne messenger (or any other third-party client that operates in approximately the same 
manner) as a client for interacting with the Dynemix network. Once a user obtains enough dynes to 
place a minimal stake, and his hardware satisfies the requirements, the client engages in minting. 

After the stake is placed, we do not expect an average user to hold constant availability. It is obvious 
that, given that the client is run at home, the user can simply close the app or shut down the PC at 
any time. Under such assumptions, it is easy to conclude that practically any arbitrary 
uptime/downtime proportion is possible, which makes it look like the model of irresponsible 
honesty (as described above) or the sleepy model (as defined by Pass and Shi). 
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We also rely on another assumption, however, which brings us to the model of weak responsibility. 
Despite the user’s ability to go offline at any time normally, in case he is selected to participate while 
being online, we expect the user to prevent losing availability and refrain from quitting by choice. In 
practice, this means that once the client figures out who has the right to participate in the creation 
of the next block, it alerts the user and prevents any kinds of soft shutdown until all the duties are 
carried out. The user is incentivized to wait, which makes us rely on his not closing the client until 
the time slot passes. At the same time, the more time passes, the less the user may have the 
opportunity to wait, if the need to shut down is urgent. Of course, this does not refer to situations 
when connection is lost due to a network or hardware malfunction, but this is expected to occur 
very rarely. 

According to the described model, we expect the following distribution of participants: 

• Weakly responsible nodes – the majority of participants. This category is represented by low-
stakes users, who will likely engage in minting via their home/office hardware. The presence of 
such actors will greatly benefit decentralization. 

• Responsible nodes – a minority of participants. Stakeholders who have placed stakes large 
enough to secure frequent participation will likely hold constant uptime. At a certain point, it 
will become economically feasible to run a node in a data center to reduce omissions. 

• Irresponsible nodes – the smallest minority of participants: those who lose connection during 
participation. We assume that a small share of such nodes will be also present, as faults are 
inevitably expected to occur. 

This model is inherently easily managed by Nakamoto-style protocols; it is not so trivial, however, to 
cope with it for a BFT-style linearly consistent protocol. To conform to the described model, the 
following measures were applied: 

a) IMIN transactions 

After a stakeholder is chosen to participate in block creation, he is expected to confirm his 
consent by issuing a special IMIN transaction directly prior to the process start. This measure 
circumvents each participant’s initial lack of awareness of each other online status. After 
observing a set of IMINs in block 𝐵𝑛−1, all participants come to a consistent view on the set of 
the selected stakeholders who are actually available at the time, which prevents offline nodes 
from affecting liveness. 

We assume that there is always a known average proportion of available and ready 
stakeholders with only some insignificant deviation. If the statistically determined proportion 
does not hold within tolerable boundaries of variation, it may negatively affect system 
throughput; i.e. if the number of the collected IMIN transactions is much lower than expected, 
the system will split into a smaller number of shards. In most cases this will have no 
consequences; if the system is running at the capacity limit, however, some transactions may 
not fit in and will be left in the pool. 

IMINs help maintain liveness in the presence of weakly responsible nodes; the question of 
safety, however, is ambiguous. 

On one hand, we assume that the adversary keeps his nodes always available and ready to 
fulfil his sinister plots, which is why non-responsible nodes who refuse to participate despite 
being chosen contribute to a higher relative number of adversarial nodes in the minter 
committee. 

On the other hand, providing an opportunity to behave in a weakly responsible manner 
without any penalties contributes to a larger global stake pool size, which in turn decreases 
the relative share of the adversary and reduces his chance of being selected for minting. 
Furthermore, lowering the participation threshold boosts the efficiency of the economic 
model of Dynemix. 

It is hard to predict which of these features will outbalance the other one in practice. 
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Although IMINs provide a solution to the problem of weak responsibility and assure stronger 
liveness guarantees, at the same time they can negatively affect liveness from the other side. 
In case no IMIN transactions are added to block 𝐵𝑛−1, a minters’ committee for block 𝐵𝑛 cannot 
be formed, which terminates the protocol’s execution. 

Minters are incentivized to process IMIN transactions (minters of block 𝐵𝑛 distribute rewards to 
minters of block 𝐵𝑛−1, which is why minters of the current block are always interested in the 
creation of the next block), hence, considering the redundant number of minters for each 
block, the mentioned situation is extremely unlikely to happen. If this issue is considered a 
feasible threat, it is possible to implement an algorithm to resolve it. 

It is important to emphasize that IMINs as a solution for weak responsibility can only be 
implemented into a protocol that can guarantee a fair block proposal, which is, in relation to 
the issue at hand, adding all known IMIN transactions into the next block regardless of the 
proposer’s preferences. If the protocol uses a conventional block-proposal algorithm, a 
malicious actor can simply censor the IMIN transactions of other stakeholders, thus 
permanently seizing control over the system. In Dynemix, this issue is resolved by our novel 
consensus solution called Guess My Block game, which is described below. 

b) Constant reshuffling of minters 

We assume that after a minter issues an IMIN transaction, he is expected to reliably hold 
availability only for a short period. For this reason, he is obliged only to participate in the 
creation of a single block and the subsequent reward distribution phase. 

c) No leaders or other single points of failure 

The Dynemix protocol is completely leaderless. If we assume the presence of irresponsible 
nodes, it is obvious that leaders can also behave irresponsibly. If we apply a view-change 
procedure in case a single shard leader fails, it will either lower the performance of the entire 
system or simply prevent consensus in the shard, which opens up an opportunity for an attack 
on liveness or fairness. 

d) More important actions first 

We assume that the more time that has passed since a minter issued an IMIN transaction, the 
less we can rely on his availability. As the protocol execution advances within each round, this 
fact is taken into consideration. 

2) Time 

Dynemix operates in a setting with synchronized clocks adjusted to the global time. The time is 
divided into discrete slots of 10 seconds (this is subject to adjustment if required), which each 
correspond to a block created during that time slot. A time slot is split into a number of subslots 
corresponding to the phase of the protocol. 

We assume that all nodes, once connected to the system, synchronize clocks and have an 
approximately consistent view on the current protocol execution phase. Nodes are allowed to 
experience minor discrepancy in their local views on the current time, given that this discrepancy is 
insignificant on the scale of the determined subslots. 

Known time synchronization algorithms for peer networks can be classified into two categories: 

a) Symmetric (peer-to-peer) 

In symmetric protocols, each participant has equal influence on the system time. This 
approach can be used for blockchains mostly in a limited-view manner, which corresponds to 
communication overlay of various peer networks, including blockchains. 

Intuitively, the symmetric approach seems to be the most relevant to a blockchain system, as 
it satisfies the principles of decentralization; it also, however, has several shortcomings. 



28 

 

The first one is its highly questionable Sybil resilience. The attacker can spread his infected 
view over the system, thus massively breaking consistency, or can perform an eclipse attack 
targeting particular nodes. Although there are several proposed techniques for the Byzantine 
setting, they may not be robust enough when the liveness and consistency of a blockchain is 
at stake. 

Another problem is scalability. We assume that peer nodes cannot have a complete view of 
the system and are limited to a local view, which consists of other nodes with which the node 
can interact. As the system scales up, the relative size of the local view of each node shrinks, 
which makes the protocol more vulnerable, especially in the presence of a powerful adversary. 

b) Asymmetric (client-server) 

The mentioned shortcomings of symmetric design can be mitigated by moving to an 
asymmetric scheme. In asymmetric design, specially appointed nodes serve as master-servers 
for the rest of the network (or a more complex multi-level hierarchy can be used), which allows 
the number of time-setting servers to be limited as desired. 

Asymmetry solves the problem of scalability, but providing more resilience still requires 
additional measures. The obvious solution would be binding a resource to the time-setting 
powers of a time server, which can significantly hamper a Sybil attack without centralizing the 
process. In relation to Dynemix, this means creating Proof-of-Stake time servers. This will likely 
require a sophisticated solution, however, which would require additional research and 
obviously would not contribute to better overall performance. 

Having assessed all pros and cons, we conclude that currently the most optimal solution is simply to 
use public NTP infrastructure for time synchronization. This solution can reasonably be criticized for 
relying on an external source, which does not seem appropriate for a truly decentralized system; it 
provides certain benefits, however, that make this decision much less controversial: 

• NTP is the most popular time synchronization solution to date. It has existed for decades and 
tested against various attack vectors. Given that scalable time-sync protocols for blockchains 
(and peer networks with Byzantine actors in general) are still in their infancy, it may be 
reasonable to turn to a more reliable solution, at least until a robust decentralized protocol is 
designed and tested. 

• Engaging NTP will bind the system to the external infrastructure to a certain extent, which can 
provide more robustness. Given that time sync will be left out of bounds of the blockchain 
protocol, it will not be possible to distinguish the particular fraction of NTP infrastructure that 
is used by the system. For this reason, the adversary will not be able to aim specifically at 
Dynemix, but instead will have to attack the entire NTP infrastructure, which is used by a huge 
array of various systems. 

3) Communication 

We use the ∆-bounded model of communication. Whenever each node sends a message, this 
message is received by a recipient node within ∆ delay. All messages are cryptographically signed, 
which ensures authenticated communication based on the global PKI setup. 

The protocol does not require constant strong synchrony and makes progress as long a threshold of 
designated replicas hold a bounded delay ∆ during each round of execution. At the same time, 
nodes that temporarily lose connectivity are allowed to rejoin the protocol and restore consistency. 

Essentially, we adopt the model of weak synchrony as described by Guo, Pass and Shi. We consider 
this model the most realistic description of the practical setting that we assume. 

4) Lock-step and responsiveness 

Dynemix is designed to operate in a lock-step execution manner, which means that the protocol 
makes progress in strictly predetermined time intervals, which are set according to the estimated 
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communication latency, bandwidth and computation delay assumptions of the peer nodes. It may 
seem much better to achieve responsiveness, however. The protocol is considered responsive if the 
progress is made according to the actual communication and computation delays of the 
participants, independent of the expected upper latency bounds. 

Responsiveness is thought to be a feature of asynchronous protocols. One can, however, envision a 
sophisticated hybrid solution that could bring responsiveness into the synchronous model as well. 
For example, in Thunderella (and several other solutions), the mentioned property is achieved by 
packing an asynchronous algorithm into an underlying synchronous algorithm, thus achieving 
responsiveness on the fast optimistic path and keeping the minority corruption tolerance on the 
slow fall-back path, which is engaged once the optimistic conditions are not met. 

As we stated in the beginning, fast finality is one of the essential features of a decentralized 
payment system, which raises a question: can we upgrade Dynemix to achieve responsiveness? 
Since we are designing our protocol from scratch, we are not bound by any particular models or 
restrictions, and it looks tempting to apply some tricky solution that can help speed up the system. 

As an answer to that question, we would say rather more "no" than "yes." There are several 
fundamental factors that deprive us of such an opportunity. 

a) All replicas need to wait for the end of the time slot to make sure that everyone had a 
chance to commit. 

If we allow the protocol to proceed after obtaining a threshold of signatures at the shard 
consensus stage, slower minters will be deprived of the opportunity to participate and receive 
a reward. Such a situation will give an unfair advantage to those who run nodes in fast data 
centers on powerful hardware and will disrupt the system of essential economic incentives of 
the protocol. 

If we tighten the optimistic conditions from obtaining a threshold to obtaining all signatures, 
given the total number of participants, it is highly unlikely that not a single one of them would 
experience a communication fault or simply behave unresponsively, which means that such 
optimistic conditions will happen so rarely that it barely makes sense. 

A similar situation occurs at the master consensus stage. We need to assemble the most 
complete set of shard-blocks, which means that we can either proceed only after all expected 
shard-blocks are propagated or wait until the respective subslot expires. 

Moreover, even after obtaining all signatures or collecting all shard-blocks, it is still preferable 
to wait until the end of the time slot to assure the opportunity to present a proof of fraud in 
case adversarial behavior is detected. From that perspective, responsiveness makes the 
system less secure. 

b) Time slots should be consistent among all nodes, including those who currently do not 
participate in the consensus. 

Most BFT protocols separate the participants of the state transition procedure from the 
external nodes. For example, in PBFT, an external node (denoted as a client) sends an input 
value to one of the participants (denoted as the leader), who then reaches a consensus with 
the other participants (denoted as backup replicas) and provides the agreed output value to 
the client. 

In variations adapted for blockchains, the leader assembles a block from transactions that he 
somehow obtained beforehand, drives a consensus with other replicas and propagates the 
resulting output-block through the network. Commonly, input values are propagated through 
the network via a gossip protocol, which ensures that each time a node is selected as a leader, 
it possesses a large chunk of currently pending transactions. A node that issues a transaction 
does not need to send it to particular nodes at a particular time – gossip assures that the 
transaction will get to a leader with an expected modest delay with high probability. 
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Dynemix, on the other hand, features a completely different input value-submission algorithm. 
A critical condition for it to work properly is that the client submits transactions to a 
predefined set of replicas during the prescribed time slot. All nodes in the system (including 
both clients and replicas) should have a consistent view on these subslots for each round of 
protocol execution, which contravenes the notion of responsiveness. 

This algorithm is implemented to achieve the crucial property of conventional centralized 
payment systems: impartial instant processing of all transactions that were sent to the system, 
which is undoubtedly a higher priority than achieving responsiveness. 

2. Censorship and transaction fees 

In the beginning of the white paper, we mentioned two important features of a decentralized 
payment system that we intend to achieve: 

• The system should instantly process all transactions that users send to the 
network. 

• Transactions should be processed without fees. 

These features will help raise the level of user experience to the level of existing conventional 
payment systems, which is an essential condition that can allow a blockchain platform to compete 
with those systems on equal footing. 

Most current generation blockchains (whether of a PoS or PoW design) rely on a leader who 
proposes block candidates. Other nodes vote for the proposed block and the network either accepts 
or rejects it. 

According to this approach, the leader assembles the block at his own discretion and is free to reject 
any transactions. He may consider the proposed fee insufficient or may simply have personal 
feelings about the transaction issuer. For this reason, users must compete for the leader’s favor (in 
most cases by offering a higher processing fee), which severely deteriorates the user experience 
compared to conventional payment systems, as they process all transactions without any 
preference. Furthermore, this approach creates the preconditions for censorship. 

Such an approach is especially dangerous for Dynemix, since we have implemented a solution for 
maintaining liveness in the presence of weakly responsible nodes (the described above IMINs) that 
strongly relies on impartial block proposal. The ability to censor transactions can lead to the capture 
of the system by the adversary. 

Although there is a number of projects that addressed the problem of censorship (for example, 
Honey Badger introduced multi valued transaction set proposal), to date no one managed to get 
close to the stated parameters. 

As we intend to process transactions for free, it complicates the task even further – why would the 
leader put any particular transaction into the proposed block, if he has no incentives for doing so? 
This issue may seem insoluble within the currently available concepts, and to date, we have seen no 
solution that can help achieve both stated features assuming the non-altruistic behavior of 
participants. That is why we had to develop a new design of a block proposal algorithm and 
introduce a completely different approach. 

3. Guess My Block game 

1) Brief description 

Our solution to the problem is offering minters to play a game with incomplete information, in 
which the optimal winning strategy implies adding all known transactions to the proposed block 
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and the resulting consensus between players is reached via a synchronous authenticated 
multivalued Byzantine agreement. 

In Dynemix, no leaders are appointed in shard committees. All minters propose their own shard-
blocks on equal footing and have equal votes during the multivalued consensus round. The voting is 
carried out not by accepting or rejecting a shard-block proposed by the leader, but by proposing 
identical or non-identical shard-blocks by players. 

If the majority (supermajority) required to reach a Byzantine agreement propose identical 
shard-blocks, their blocks win and all minters who proposed those blocks receive a reward. The 
minters who proposed different versions of the shard-block or proposed nothing are not 
rewarded. 

If identical shard-blocks are proposed by an insufficient number of minters, a consensus is not 
reached, the shard-block is skipped, and no one receives a reward. 

If someone proposes multiple different versions of a shard-block (behaves Byzantine), his vote is not 
counted by honest minters and his stake is slashed. 

This game implies the need to guess the block that most of the minters will propose without being 
aware of the preferences of all the others. The optimal winning strategy is to commit a block 
assembled according to the default rules, which means including all known transactions (or any 
other set of rules that is reliably expected to be supported by the majority of players). 

2) Game explained 

Assume that Ivan is a transaction issuer, and that the shard committee consists of 𝑚 = 3 minters, 
where Alice and Bob are impartial rational players and Chuck does not like Ivan and intends to deny 
his transaction. At the same time, none of the minters can coordinate his actions with others, Ivan is 

not aware of Chuck’s intentions and a consensus in the shard is reached by 2

3
𝑚. 

Also assume that all messages between the participants are delivered within the expected ∆-
boundary and that nobody behaves Byzantine (the Dynemix protocol can tolerate communication 
faults as well as Byzantine behavior, but to simplify the model these conditions are neglected in the 
following description). 

a) Ivan sends the transaction only to Chuck. 

 

Chuck receives Ivan’s transaction 𝑇𝐼 but has no intention of adding it to the block. For this 
reason, during the transaction sets exchange phase, he submits his set to Alice and Bob, but 
does not include 𝑇𝐼 . He receives Alice’s and Bob’s sets and sees that they are not aware of 𝑇𝐼 . 
Since none of the minters included 𝑇𝐼 into their sets, they all propose identical shard-blocks 
without 𝑇𝐼 and each of them gets a reward. Chuck wins. 

For this reason, Ivan should send his transaction to all minters of the shard. 
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b) Ivan sends the transaction to Alice and Chuck. 

 

Chuck receives Ivan’s transaction 𝑇𝐼 but has no intention of adding it to the block. During the 
transaction sets exchange phase, he submits his set to Alice and Bob but does not include 𝑇𝐼 . 
He receives Alice’s and Bob’s sets and learns that Alice was aware of 𝑇𝐼 , while Bob was not. 
Since Alice sent Chuck a set with 𝑇𝐼 , Chuck assumes that she sent the same set to Bob. 

During the hash exchange phase, he receives the hash of the Alice’s set ℎ𝐴 from Bob, and 
since it is identical to the hash of the set that he received directly from Alice, he is now sure 
that Alice and Bob are both aware of 𝑇𝐼 . Chuck knows that if Alice and Bob propose identical 
shard-blocks, they will win the consensus round regardless of his decision. He has no choice 
but to commit a block with 𝑇𝐼 included if he expects to receive a reward. 

c) Ivan sends the transaction only to Alice, but both Bob and Chuck dislike Ivan. 

 

Now the game gets complicated. Not only does Chuck want to reject Ivan’s transaction, but 
Bob also intends to do the same. At the same time, Bob and Chuck are independent minters, 
their actions are not coordinated and they are not aware of each other’s censorship 
preferences. 

Even if Bob and Chuck received 𝑇𝐼 , neither would include 𝑇𝐼 in their sets, but to their 
misfortune, Ivan sent the transaction to Alice, who is impartial. She includes it in her set, and 
after the exchange phases, Bob knows that Alice and Chuck are assuredly aware of 𝑇𝐼 , and 
Chuck knows that Alice and Bob are assuredly aware of 𝑇𝐼 . 

Both Bob and Chuck would prefer not to include 𝑇𝐼 in the block, and if they propose identical 
shard-blocks without 𝑇𝐼 , they will win the consensus round, 𝑇𝐼 will be rejected, Bob and Chuck 
will receive a reward and honest Alice will be left without a reward. 

Since they are uncoordinated, however, they cannot be sure of each other’s intentions 
(meaning their mutual agreement not only to reject 𝑇𝐼 but also whether to reject or accept any 
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other transactions). Chuck may suspect that Bob also dislikes Ivan and might be willing to 
reject 𝑇𝐼 , for Bob did not submit 𝑇𝐼 to Chuck in the set exchange phase, but this is a too weak 
assumption to rely on, unless Ivan is the most hated person in the world. 

Chuck and Bob may turn to the rushing strategy: that is, holding their shard-blocks until they 
see all the other proposed blocks and committing their blocks afterward. If they do so, 
however, both will only get the hash of Alice’s shard-block with 𝑇𝐼 included and eventually 
each of them will be forced to make one of the following decisions: 

• To wait more and risk missing the moment when the time slot expires, and thus not 
getting a reward. 

• To commit a shard-block with 𝑇𝐼 , thus winning the consensus round together with Alice 
regardless of the decision of the third player and getting a reward. 

• To commit a shard-block without 𝑇𝐼 and hope that the third player will side with him and 
commit an identical block. 

The third option is obviously non-optimal, since it relies on a probabilistic assumption that the 
same censorship preferences will be supported by the consensus supermajority. To a certain 
extent, this assumption may be eligible with a single 𝑇𝐼 and only one remaining waiting player, 
whose decision will determine consensus, which means that the voting simply turns binary. 

If there are ten minters in the shard, however, and Chuck intends to reject the transactions of 
different issuers (say 𝑇𝐼 and 𝑇𝐷) simultaneously, he cannot rely on others having exactly the 
same preferences. Some may agree with rejecting 𝑇𝐼 , but at the same time, they may not 
agree to reject 𝑇𝐷 , which is why they may prefer to side with the honest minters. 

Since the voting is not binary and implies a huge number of potential proposals, no reliable 
assumptions on the censorship preferences of other players can be made, and no unitary 
adversarial strategy under the uncoordinated adversary assumption can be predicted. 

When each rational minter makes a choice, he presumes that there can possibly be up to 𝑚 −

1 honest minters (ones who follow the default rules, in our case) and up to 𝑚 − 1 adversaries, 
which makes the odds even, but at the same time, honest minters will propose only one 
variation of a shard-block, while the adversaries can possibly propose up to 𝑚 − 1 different 
variations chosen from 2𝑡 combinations, where 𝑡 is the amount of all known transactions, 
making including all transactions into the block the optimal strategy for both rational and 
altruistic players. The default known censorship rules may be considered a focal point of the 
game. 

3) Game’s guarantees 

Guess My Block game ensures with high probability that each 𝑇𝑛 will be added to the next block, 
given that both of the following assumptions are true: 

• 𝑇𝑛 was received by at least one player, who does not intend to reject 𝑇𝑛 . 

• Players who intend to reject 𝑇𝑛 do not form a coordinated consensus threshold. 

Guess My Block may not be efficient if the overwhelming majority of minters start arbitrarily 
rejecting transactions from issuers, ultimately reducing their sets to zero. This threat is less relevant 
to blockchains that feature commissions for transaction processing, but this may hypothetically 
cause a problem with the free-transaction design of Dynemix. 

The fundamental limitation on the way to creating a solution for a fully rational environment is the 
inability to non-interactively prove that certain data were transferred from one node to another. As 
the transaction sender cannot prove that he actually tried to commit a transaction to the minter, we 
cannot apply any punitive measures on minters who refuse to add certain transactions to their sets. 
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On the other hand, such a kind of behavior is equal to the liveness attack as it practically stalls the 

protocol. If we assume that our BFT consensus inherently features 1

3
𝑚 liveness threshold, the stated 

attack vector doesn’t create any additional threat and hence doesn’t require specific counter 
measures. 

4) Guess My Block in the master consensus round 

Master-blocks are assembled according to the principles of Guess My Block as well. Instead of 
transaction sets, minters exchange patches and shard-block headers (or complete shard-blocks) to 
collect the most complete set. 

Minters are rewarded only in the case that a shard-block signed by them is included in the master-
block, which incentivizes all members of each shard committee to spread their block as widely as 
possible. 

Considering that each rational minter will obviously vote for a version of the master-block that 
contains his own shard-block, the most complete set becomes the focal point. 

During voting, the shard committees are disbanded, and each minter behaves independently. The 

consensus threshold in a minter committee of 𝑀 members is set to 3

5
𝑀. 

With the growth of the system, a master consensus round will start creating a larger 
communication overhead. Unlike shard-committees, which feature a fixed number of 
participants, master-committees scale according to the size of the account base and the average 
TPS. At some point, the number of replicas will reach the thousands, which raises the question of 
further optimization. 

In this case, it is reasonable to appoint a number of delegates form each shard, who will be 
authorized to participate in a master consensus. The largest stakeholders among the minters 
who signed the shard-block seem to be the optimal choice. 

It can be clearly observed that at this stage we apply a lower threshold than during a shard 
consensus. By doing so, we respect the weakly responsible model described above. We assume that 
some minters may not make it to the master consensus, which is why the liveness threshold at this 
stage should be slightly relaxed. In addition, validity cannot be breached at this stage (in the 
meaning of state output), as all shard-blocks are already settled by the shard committees, which is 
why we consider it an appropriate measure to provide more liveness at the cost of consistency 
guarantees. 

One may ask a reasonable question – why can we not simply set the threshold to 𝑛 > 2𝑓, which is a 
known lower bound for a weakly synchronous communication model? Indeed, we can. As we are 
developing a protocol for practical implementation, however, we are not restrained by the 
assumptions of any particular model, and we can take different approaches if we consider them to 
meet our needs. 

Unfortunately, protocols that tolerate minority corruptions can tolerate zero corrupted replicas 
under asynchrony, which is a fact that concerns us. Although we rely on weak synchrony, we still 
respect the probability of some extreme situations in which the system can be partitioned due to a 
massive network failure (caused by a war, a global cataclysm etc.). In this situation, we would prefer 
to retain at least certain minor consistency guarantees that can assure an acceptable level of safety. 

With the chosen threshold, the system can hold consistency in the presence of up to 𝑛 > 5𝑓 
corrupted nodes even under asynchrony, which seems sufficient given the very low probability of 
the occurrence of asynchrony, especially with the presence of a powerful adversary who can control 
communication. 

With the help of the described algorithm, we achieve the following: 

• assurance that all assembled shard-blocks will be included in the master-block; 
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• prevention of the grinding of different combinations of shard-blocks to find a random oracle 
that favors the adversary. 

It is worth noting that during the master consensus round, there can be a short opportunity for the 
adversary to try a grinding attack. To be able to grind a hash of the master-block, the adversary 
should meet the following conditions: 

• control the BA threshold of minters in at least one shard; 

• receive all other shard-blocks before grinding. 

If the adversary fulfills both requirements, he will have a very short time slot to grind different 
versions of a shard-block in order to find a master-block with a hash that will provide him a better 
representation in the next minter committee. 

We do not consider this attack vector to impose a serious threat for the following reasons: 

• Obtaining a consensus threshold in even a single shard is not easy to achieve, unless the 
adversary controls a comparable proportion of stake in the global pool. In other cases, he will 
gain an opportunity to take over a shard only extremely rarely at best. 

• A time window for grinding is so short and the number of values is so huge that the 
probability of finding a hash that can provide significant advantage is neglectable even for a 
very powerful adversary. 

5) Coercive attack 

Although the adversary is required to possess > 2

3
 (the consensus threshold) of the total voting 

power to arbitrarily apply any desired censorship rules, the adversary who controls ≥ 1

3
 (the liveness 

threshold) of the voting power can try to force rational minters to follow his censorship rules under 
the threat of halting the consensus and preventing minters from receiving rewards. 

An attack can be executed in different ways, but the basic conditions are the following: 

• The adversary controls ≥ 1

3
 of the voting power and convinces the majority (or other required 

threshold) of the other stakeholders of the seriousness of his intentions; 

• The adversary publicly declares his block assembly rules and actually follows them. 

If all participants except the adversary are purely rational, they will conclude that if the adversary 
always proposes shard-blocks assembled according to his declared rules, he will either win or break 
the consensus. The only option to get a reward for others is to follow the declared rules. 

We do not consider this attack scenario realistic in the practical setting of Dynemix for two reasons. 

• The adversary will unlikely be able to convince the required threshold of honest stakeholders 
to submit to his authority and let him control the system in this way. It is more likely that 
honest minters will reach an agreement and simply ban the adversary via a hard fork. 
Considering the size of the stake required for the attack described, the adversary will suffer 
tremendous damage. 

• Such behavior is not completely rational from the point of view of the adversary himself. 
Considering the setting of Dynemix, the adversary cannot expect all minters to behave purely 
rationally. Instead of forcing others to follow his rules, he may end up simply stalling the 
protocol, which is against his own interests. 

If we assume that the adversary is irrational and actually intends to harm the system, we can do 

nothing against a malicious actor who controls ≥ 1

3
 of the voting power, as it is an inherent liveness 

threshold of any BFT consensus model based on an honest supermajority assumption. The only 
solution is to go beyond the protocol rules and slash the stake of the adversary via a hard fork. 
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Guess My Block is designed to operate in ∆-bounded (weakly) synchronous setting, which means 
that it can actually tolerate up to 𝑓 corruptions out of 𝑛 > 2𝑓 replicas as long as synchrony holds 
for the required threshold of replicas. We can take advantage of this property and simply set the 
shard consensus threshold to > 1

2
𝑚, which renders the described attack pointless, as it would 

require almost the same amount of resources as a consensus takeover attack. 

This will reduce safety guarantees, however, which we consider a higher priority (especially in 
relation to validity). For this reason, we decided to keep the threshold of shard consensus at the 
level of asynchronous BFT protocols, assuming that the described attack does not pose a serious 
practical threat. 

4. Scalability 

In the beginning of this white paper, we stated an important feature of a decentralized payment 
system that we intend to achieve: 

• The system should be capable of processing at least 10,000 TPS. 

Most first-generation blockchains suffer from the scalability issue. Many developers of recent 
projects have addressed the problem and proposed a number of solutions, which include different 
tradeoffs. 

The main problem at hand is a trilemma that states that higher scalability, security and 
decentralization cannot be reached simultaneously and that only two properties can be targeted. 

 

Known solutions to the scalability issue can be conditionally classified into two categories, 
depending on which vertex of the triangle is sacrificed: 

a) Reducing the number of validators to a small group (sacrificing decentralization) 

This approach solves the problem by limiting a possible validator set to a small professional 
group that possesses powerful hardware and broad bandwidth, which allow them to process 
and synchronize large data flows. This helps significantly raise the network delay, bandwidth 
and computing power assumptions. 

The set of validators can be limited directly by the protocol rules (DPoS) or by applying a high 
participation threshold. 

Though such a system may be formally considered permissionless, in practical terms this 
approach makes the system semi-permissioned, as the participation opportunity is drastically 
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limited, which inevitably leads to the emergence of a coordinated oligopoly, whose interests 
include preventing new players from joining. 

Unfortunately, following this approach leads to the severe centralization of the system, thus 
making it essentially pointless. This is a tradeoff that we cannot accept, which is why we had to 
search for another solution. 

b) Sharding the system (sacrificing security) 

Another approach is based on splitting the network into independent or semi-independent 
partitions, thus distributing the load between them respectively. 

Though sharding may be considered an effective solution to the scalability issue, it negatively 
affects safety. Sharding makes the system vulnerable to a dangerous attack vector of a 
fraudulent block approval. 

In classic blockchains, blocks, which are propagated across the entire network, contain all the 
data necessary to verify that the state change occurred according to the rules of the protocol. 

If an adversary tries to commit an unsubstantiated state change (for example, adding to his 
balance an arbitrary number of coins that emerge out of thin air), the adversary’s deviating 
block will be rejected by all nodes. Since the adversary is disincentivized to make such 
attempts (in PoW systems, he suffers from the waste of resources, and in PoS systems with 
slashing rules he loses the stake), non-sharded blockchains are highly sustainable against this 
attack vector and feature strong validity guarantees. 

The sharding concept stipulates partial data propagation to ensure the increase in scalability, 
which is why the security of the entire system is reduced to the security of each shard. 
Considering that cross-shard interaction is based on trust between validator committees, 
succeeding in one shard allows the adversary to affect the entire network. 

As the stated approaches engender radical tradeoffs, we had to develop a non-trivial solution to 
maintain the desired level of decentralization without sacrificing security. 

5. Brief introduction to sharding 

Our sharding solution corresponds to the specific settings and limitations caused by the targeted 
properties we intend to achieve. To help better understand our approach, we will briefly describe 
known sharding concepts and issues from which each of them suffers. 

Typically, we can use two different sharding concepts: 

a) Without the global state 

This approach isolates the shard state and hence requires additional cross-shard 
communication about the majority of transactions (particularly transactions that change the 
states of accounts assigned to different shards). 

Though sharding with isolated states provides more scalability, it also begets more problems. 

The first and most important issue is security. As the state transition is performed and 
validated only within the shard, a successful attack on a shard breaches the security of the 
entire system. The most dangerous vector in this case is adaptive corruption or coordination. 
Since validator committees in isolated shards cannot be quickly reshuffled, the only option to 
mitigate the risks is to appoint very large committees and assume that the attack delay will be 
assuredly greater than the reshuffle rate. 

In addition to the security issues, complete sharding poses another serious problem – delayed 
finality. 
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The global state contains information only about shard assignments, and account states are 
stored only within shards to which accounts are assigned. Each shard works independently, 
and in the case of a cross-shard transaction, the problem of atomic commits arises. 

Proposed solutions to the problem feature sequential updates of the states of both the 
sender’s and the recipient’s shards in four steps, which significantly increases finality latency. 

Finally, complete sharding reduces data availability, which causes concerns, especially in 
relation to crucial data, such as the states of the accounts. 

b) With the global state 

Partial sharding involves the sharding of a state-transition procedure, but at the same time 
does not isolate shard states, assuming that all shard states are assembled into the global 
state, which is then propagated through the entire network. 

This approach helps solve certain security issues, such as adaptive corruption and 
coordination, by allowing the reshuffling validator sets as quickly as needed. It still features 
lower overall security than non-sharded designs, however, due to the partial data propagation. 

In addition, partial sharding allows us to solve the finality latency issue, and to increase 
availability of crucial data. 

On the other hand, it provides weaker scalability. 

6. Problems of sharding in Dynemix 

1) Our sharding scheme 

Having assessed all the pros and cons of the described designs, we concluded that currently the 
optimal solution for the scalability issue in Dynemix is partial sharding. We also find it feasible, 
however, to implement complete sharding architecture in the future. A possible solution would 
require further research, and it is more reasonable to start with partial sharding to assess the system 
behavior in practice under real-life conditions before moving toward the implementation of 
complete sharding. 

The main reason for such a decision is that we do not treat scalability as a property that should be 
enhanced as much as possible. We need to reach only a presumably sufficient level, exceeding 
which does not bring any more tangible benefits. There is absolutely no sense in providing a million 
TPS if we assume that the demand can simply never grow that high. 

According to our estimates, which are based on the available statistics on conventional centralized 
payment infrastructure, 10,000 TPS is the approximate upper level of demand under current 
conditions. Given that we are creating a potentially more advanced infrastructure than has been 
available to date, we may assume that the variety of use cases may expand in the future, pushing 
the demand beyond the stated boundary, but in any case it will unlikely be exceeded by an order of 
magnitude (especially considering that Dynemix is not designed to support Turing-complete smart 
contracts). 

Partial sharding allows us to reach the required scalability while at the same time providing 
solutions to several important issues, which is why we consider this option preferable. Complete 
sharding should be considered only if we face a substantial lack of scalability of the current design. 

In Dynemix, each transaction is assigned to a particular shard according to the transaction’s issuer. 
Minters of the shard process the transaction and update the states of both the sender and the 
recipient (or multiple recipients if the transaction has multiple outputs). The resulting state changes 
are then propagated as patches throughout the network so that the minters of the next block know 
the entire state of the system and there is no need for cross-shard communication during the 
transactions’ processing. 
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This approach allows transactions to be finalized within one consensus round and excludes the 
opportunity to abuse the train-and-hotel problem for double spending. With the help of a global 
state, we apply constant resharding, which helps instantly adapt to the current level of demand, 
provide a solution to the weakly responsible model of participation and resist adaptive corruption. 

It still brings a number of security issues, however. 

2) Adaptive attacks 

In the section describing the Guess My Block game, we noted that the game puts a number of 
restrictions on the system design that negatively affect different properties of the platform. 

One of those restrictions is the inability to involve a large number of participants. With the growth of 
the shard committee, communication overhead may become intolerable for most players, and 
scalability and decentralization will be negatively affected. This means that to provide sufficient 
scalability and keep the sharding solution efficient, we have to keep the size of the committee small, 
but this inevitably reduces security in the adaptive corruption model. 

Assume that the adversary intends to bribe minters to approve his fraudulent transaction or censor 
certain third-party transactions. As we apply sharding, this means that, instead of bribing the 
majority of stakeholders from the global pool, the adversary needs only to choose one shard 
committee after its designation and bribe the consensus supermajority within a single shard. 

As far as full nodes operate in the blockchain mode, the adversary can only commit a censorship 
attack. Validity is not jeopardized, for shard-blocks are additionally verified by all nodes in the system 
(in the same way as in non-sharded blockchains). Switching, however, to quilt opens an opportunity 
to approve an invalid state change, since validity stops being verified beyond a shard consensus. 
This threat is countered by the authorized master-nodes concept, which will be described further. 
Nevertheless, we still find it crucial to resist the corruption of shard committees. 

Theoretically, this problem may be solved by appointing a very large committee (which will increase 
the attack delay assumption), but we cannot afford this due to the Guess My Block restrictions. We 
need to solve the problem in a different way. 

Assume that we have a committee of ten minters, and given the BA threshold of > 2

3
𝑚, the adversary 

needs to bribe only seven of them. This task looks feasible if the adversary has enough time to 
coordinate the minters’ actions. 

With the help of the global state, however, we can apply the constant reshuffling of shard 
committees to deprive the adversary of the opportunity to coordinate minters. As shard committees 
are formed only for the creation of a single block, the adversary only has time between the 
propagation of block 𝐵𝑛−1and the shard-block commitment of block 𝐵𝑛 , which takes about 6–7 
seconds. Bribing minters in such a short period of time does not seem possible, making Dynemix 
secure in the presence of a mildly adaptive adversary. 

The same can be applied to adaptive coordination. If minters assigned to one shard committee try 
to coordinate their actions to approve a fraudulent shard-block that grants benefits to all attack 
participants, they will not have enough time to reach an agreement within the time slot at their 
disposal. 

We can conclude that Dynemix is not designed to be secure in the instant adaptive corruption 
model. We do not, however, consider the assumptions on which this model is based practically 
attainable in the Dynemix setting. 

3) Consensus takeover attack 

One of the typical attacks on blockchains features an adversary who obtains the amount of 
resources required to affect a consensus. By controlling a liveness or consensus threshold of the 
participating replicas, the adversary can influence several properties of the system. In relation to 
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most decentralized SMR systems, we can talk about validity, consistency and liveness as the set of 
properties that can be compromised by the adversary. 

The design of Dynemix allows to include an additional property in this list – fairness that is in our 
case, agreeing on an output derived from an uncensored set of inputs. In most blockchains, the set 
of transactions to be included in a block is chosen by the block proposer (or the leader), who acts at 
his own discretion, which is why fairness cannot be guaranteed during a state transition. With the 
help of Guess My Block, however, Dynemix provides certain fairness guarantees, which is why we 
can include fairness in a set of properties that can be held under normal conditions. 

Another important feature of the platform is a two-layer consensus, which means that the stated 
properties can be actually violated twice during a single round of protocol execution. This makes the 
attack scenarios more variative and complicated. 

Finally, Dynemix can function in the blockchain mode (meaning that all nodes operate with 
complete shard-blocks and master-blocks) or in the quilt mode (when only patches are exchanged, 
and a quilt is built during the master consensus phase). These two types of operation also feature 
different optimal attack strategies and adversarial thresholds. 

In this section, we will describe the most dangerous attack scenarios and try to evaluate the level of 
resilience that can be provided with the current design. 

First of all, we need to apply measures that impede the Sybil strategy. 

a) Fair weighted sampling 

The first step is applying fair weighted sampling on a minters’ committee designation stage to 
assure that there is no economic benefit for the stakes of lower sizes, and there are no 
incentives for stakeholders who split the stakes between Sybil accounts. This is also essential 
for the economic model of Dynemix to function properly. 

Since shard committees feature a low number of participants, however, there is statistical 
dispersion that provides a non-zero chance that after a certain amount of rounds the 
adversary eventually may get lucky enough to have more than an average number of his Sybil 
accounts simultaneously assigned to a particular shard, which can lead to a single-shard 
consensus takeover. 

Under such conditions, if the adversary tries to control shards, the optimal strategy is to split 
the stake among the highest possible number of Sybil accounts (the total stake of the 
adversary divided by the minimal stake amount) and wait until the dice rolls in the favor of the 
adversary. Considering the ten seconds’ block time, more than 3 x 106 reshuffles will occur each 
year, with the number of shards possibly reaching the hundreds, which provides an optimistic 
forecast for a patient adversary. 

b) Bin sorting 

To further impede the Sybil attack, the second step is added – sorting minters among shards 
in a way that assures a proportional stake distribution. Since the stated task is a variation of the 
partition and bin-sorting problems and hence is NP-complete, the optimal solution can create 
excessive computational overhead, which is why we use a simple approximate algorithm, as 
we do not need high precision. 

All selected minters are sorted by the sizes of their stakes and split into bins according to the 
number of shards. Minters from each bin are then sorted by shards as the picture below 
shows, excluding the final round, when a greedy algorithm is applied to assure better 
optimization. 

The algorithm forces the adversary to develop an adaptive strategy instead of simply splitting 
the stake among the highest possible number of Sybil accounts. It also solves the problem of 
uneven resources at stake, as simple random sampling would occasionally create shards in 
which minor stakeholders would form the Byzantine agreement supermajority. 
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Now let us investigate the most dangerous attack scenarios that could possibly be executed by a 
rational adversary. 

a) The system operates in the blockchain mode. 

When Dynemix operates in the blockchain mode, a single shard takeover does not pose a 
serious threat, since validity and consistency are assured during the master consensus; hence, 
the attack opens up only a censorship opportunity. Censorship starts posing a real threat 
when the adversary is capable of getting substantial representation in each block. Under such 
conditions, the adversary can censor third-party IMIN transactions, which can eventually allow 
the adversary to take over the entire system. 

If the adversary intends to seize control over the system, the most obvious solution is to 

acquire the amount of resources close to the master consensus threshold (3

5
𝑀). Once the 

adversary controls about 3

5
− 𝜀 of the global stake pool size, he will be able to control the master 

consensus and apply arbitrary censorship. 

By violating fairness and liveness at the shard level, however, the adversary can develop a 
strategy that will allow success with many fewer resources. 

Say the adversary possesses the amount of resources that allows him to continuously obtain a 
consensus threshold in a number of shards and a liveness threshold in a greater number of 
other shards, respectively. He censors the IMIN transactions of other stakeholders in those 
shards in which he obtained a consensus threshold, and blocks the consensus in those shards 
he obtained a liveness threshold. By doing so, he improves his relative representation in the 
next minters’ committee. If this strategy is consistently executed, eventually he may have a 
chance to obtain a master consensus threshold, thereby seizing control over the system. 
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According to our approximate tests, in such a scenario, controlling about 30–35% of the global 
stake pool can provide an opportunity to succeed within a reasonable time frame. 

b) The system operates in the quilt mode. 

When Dynemix switches to the quilt mode, an eventual shard takeover can allow the 
adversary to breach validity, since the complete transaction data is not propagated globally. 
For this reason, a rational attacker does not need to execute complicated strategies and is 
more likely to concentrate on a simple shard takeover and an approval of a fraudulent 
transaction. This attack would require the possession of fewer resources and poses fewer risks 
for the adversary than the master consensus takeover attack described above. 

According to our approximate tests, controlling only about 2% of the total stake would 
eventually allow the adversary to gain control of at least one shard for one round within a 
reasonable time interval. 

We should emphasize that the stated thresholds (2% and 30%, respectively) were obtained as 
results of approximate tests. The precise actual amount required for the attacks described will 
depend on the degree of the stakes’ dispersion and the adversary’s strategy, which is why further 
research on the subject is required for a more precise assessment. 

In the quilt mode attack, resilience seems to be insufficient, considering the possible consequences 
of an attack, and additional measures are required, which include the following: 

a) Targeting a sufficient global stake pool size 

The percentage of resources in the adversary’s possession can have a totally different 
interpretation in absolute numbers, depending on the size of the global stake pool. For 
example, if we evaluate Bitcoin’s practical attack resilience, we can figure out that a 51% attack 
could be described as a 0.3% attack if we express it through the amount of required resources 
relative to the total market value of the platform at the time of the attack. 

If we operate under an assumption of a 2% adversary’s stake (which is very approximate), we 
can conclude that creating a global stake pool of the size equal to 15% of the circulating 
volume raises the quilt mode security guarantees to the level of Bitcoin. To secure a certain 
level of redundancy, we target 20% stake pool size. 

We applied a number of measures to assure a sufficient global stake pool size (which at the 
same time helps raise the level of decentralization): 

• Setting a small minimal stake amount 

Although lowering the minimal stake threshold allows the adversary to create more Sybil 
minters, at the same time it lowers the participation threshold for the general audience, 
which is expected to provide more security and decentralization, thus balancing out the 
negative side effect. We need to find an optimal point of balance in this trade-off. 

• Securing low hardware and bandwidth requirements 

This helps common users participate in minting without excessive overhead, which, 
together with the previous measure, should lead to the involvement of more ordinary 
users. 

• Allowing funds to be unbonded quickly 

Since the stake amount can be unblocked and spent almost instantly, participants are 
incentivized to use all available coins as stakes, which greatly increases the size of the 
potential stake pool. 
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• Targeting mild inflation 

The economic model of Dynemix can target a desired rate of inflation, which is why 
rational owners of large numbers of coins will likely try to participate in the minting 
process instead of keeping savings in the free form to compensate for inflation. 

• Adopting the model of weak responsibility 

Allowing sporadic participation attracts additional stakeholders who cannot maintain 
constant availability. 

For a more detailed description of the coin issuance model, please refer to the Economics 
paper. 

Given the measures described, we expect the global pool to reach the targeted 20% size, 
which means that Dynemix’s quilt mode may potentially operate on the same level of security 
as Bitcoin or even surpass it (although we should note that further research is required to 
reliably confirm this claim). 

b) Building the second line of defense 

Although the measures described help strengthen security and presumably even raise it to 
the level of classic PoW blockchains, we still find the security guarantees that we can provide 
in the quilt mode insufficient. 

As we intend to create a global digital currency payment system, more security is never 
superfluous. 

During the development of Dynemix, we considered the following measures: 

• Adding another round of consensus 

Since the problem of additional security can be solved by increasing the size of the shard 
committees, which we cannot afford due to the limitations of Guess My Block, we can 
simply add another BFT consensus round that involves the required number of 
participants. 

Say ten minters play Guess My Block and decide on a shard-block candidate. Upon 
receiving the BA result from the committee, another 500 randomly sampled notaries 
take a binary vote on the question of whether to approve or reject the shard-block 
candidate, thus confirming its validity. The second consensus round finalizes the shard-
block. 

Although this approach allows the shard takeover threshold to increase greatly (pushing 

it to 2

3
− 𝜀 of the global stake pool) by increasing the size of the validator sample to a scale 

that nearly nullifies the statistical dispersion, it negatively affects finality latency and 
throughput; a consensus round of hundreds of participants will take significant time to 
process due to the excessive communication overhead. 

Although there are some proposed solutions to reduce communication complexity for 
BFT algorithms, we do not find the inherent tradeoffs of these solutions acceptable. For 
example, using BLS threshold signatures can greatly reduce the amount of data 
exchanged between participants, but the concomitant increase in computation 
overhead can balance out the positive effect. 

• Involving authorized notary (witness) nodes 

Instead of adding another BFT consensus, we can offer authorized nodes to testify that 
the block was seen and verified. This approach does not necessarily require an 
agreement to be reached, and there can be different models of this concept’s 
implementation. 
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For example, we can use the reputation-based assignment of notaries, DPoS voting or 
any other method of choosing a set of trusted nodes that can vote for shard-blocks 
and/or master-blocks they consider valid. The more votes each block gets, the more 
reliably finalized it becomes (different designs can weaken the consistency guarantees of 
the system to eventual or probabilistic consistency). 

There can be of various sets of rules on the notarization procedure, but this model has a 
fundamental flaw: since a small group of predefined players can decide whether the 
entire system accepts a block, this creates incentives for cartel formation and censorship 
strategies. 

• Involving fishermen 

If the previous solutions presume that the block is not accepted until it is signed by a 
certain number of verifiers, the fishermen concept presumes the opposite – the block is 
considered valid until a fisherman triggers a fraud alert. 

This approach ensures better decentralization, as fishermen cannot directly influence 
the finalization of valid blocks, but on the other hand, it inherits a dilemma that is hard to 
resolve. If we can manage to provide a reliable solution to the fisherman’s dilemma, this 
concept seems to be the most optimal for our system. 

7. Master-nodes for additional safety 

Our solution for the second line of defense is based on the concept of authorized fishermen. It 
allows security assumptions to be greatly increased, while at the same time retaining the 
decentralization achieved in the quilt mode and not delaying finality. 

1) Fishermen concept 

According to the initial notion, fishermen are nodes that perform various kinds of spot checks of 
data chunks in search of faulty data. If a fisherman finds a fault, he propagates an alert through the 
network and gets a reward. 

a) Unintentionally faulty data 

Fishermen may be an effective solution to provide redundant fault tolerance, but blockchains 
do not need it, because blockchain technology features high common fault tolerance by 
default. 

If we assume that a state change is replicated on a number of nodes that should get the same 
output in order to reach consensus, we can claim that sufficient redundancy is provided at the 
consensus round. There is a near-zero chance that a number of independent minters will 
simultaneously suffer the same common fault, which makes fishermen useless in this case. 

b) Maliciously faulty data 

Though there is clearly no point in the fishermen searching the blockchain for unintentionally 
faulty data, they might be interested in searching for maliciously corrupted data. If there is a 
possibility of a shard consensus takeover, there is also a chance of finding an invalid state 
change. 

The problem is that the adversary will simply not give out the data. Suppose the adversary 
creates a fraudulent shard-block and the fisherman requests the transaction data. The 
adversary knows that if he discloses the data to the fisherman, the latter will certainly 
propagate it through the network and every node will be aware of the fraud. That is why the 
optimal adversarial strategy is to keep the data unavailable. 
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c) Unavailable data 

If the adversary ignores the fisherman’s request for the data, which is the optimal behavior 
under the assumption that the data is fraudulent, the fisherman will have no proof of 
adversarial behavior and will not be able to trigger an alert and receive a reward. 

The only option is to allow fishermen to trigger an alert if the node ignores their requests, but 
this solution begets a dilemma. 

2) Fisherman’s dilemma 

Since concealing data is the optimal strategy for the adversary, we can state that fishermen have no 
economic interest unless we provide an opportunity to act in the case of data non-availability. On 
the other hand, if we grant fishermen such authority, it creates preconditions for its abuse. 

a) Either fishermen or minters can abuse their opportunities. 

If we try to set rules for a rational environment, any model of economic incentives will feature a 
contradiction, as neither is the fisherman able to prove that the minter received the request 
and ignored it, nor can a minter prove that he submitted the requested data. 

Suppose we granted fishermen permission to trigger an alert if minters do not satisfy the 
request. In this case, any fisherman can initiate a DDoS attack on their chosen minter at a 
near-zero cost. A malicious fisherman triggers an alert, and the entire network spams the 
minter with data requests. The minter cannot ignore it; otherwise, he will be accused of fraud. 
Nor can he prove that the fisherman’s claims were deliberately false. 

Suppose we added a kind of a stake requirement for fishermen, so that in the case that a 
fisherman triggers a number of false alerts, we can apply punitive measures on him. Then 
malicious minters will intentionally conceal valid data from fishermen in order to trigger alerts 
and present the data afterward, thus draining their stakes until no fishermen are left. 

In addition to the problem of unbalanced incentives, there is a problem of near-zero success 
expectations. 

b) The fisherman has low motivation, knowing that he will not succeed because the adversary 
is aware of his presence. 

If we suppose that the fisherman and the adversary are players who try to think a step ahead 
of each other, their attempts to develop a winning strategy in their rivalry will face a 
contradiction. 

The adversary knows that if he tries an attack, a fisherman will likely discover it and his 
resources will be wasted. This is why the adversary will likely refrain from attacking while 
fishermen are present in the system. 

The fisherman understands this and concludes that there is no economic sense in suffering 
the waste of resources with a near-zero chance of succeeding against the adversary. 

Under these assumptions, both the fisherman and the adversary find themselves playing a 
draw duel like cowboys in westerns. The only difference is that, in our case, none of the players 
is likely try to draw a gun due to expectations that his move will be effectively countered by 
the opponent, which means that the optimal solution is simply not to play. 

Taking into account the above, it can be stated that fishermen can strengthen the security of 
the system by doing absolutely nothing – the mere threat of their presence forces the 
adversary to adjust his strategy. 

On the other hand, there is always a possibility that some daredevil may commit an attack 
supposing that no fishermen are active due to the problem of low success expectations, which 
is why we do not consider this model sufficient for building security guarantees upon. 
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3) Major stakeholders as fishermen 

Our solution is built upon an assumption that there is always a category comprising nodes that are 
indirectly incentivized to keep the system secure, which is why they can perform the functions of 
fishermen even without any direct economic incentives. 

As we have explained, nodes can operate in either the quilt mode, which has lower hardware and 
bandwidth requirements, or the blockchain mode, which, not being fully affected by sharding, 
significantly raises the overhead. Nodes that keep the record of the entire blockchain are called 
master-nodes. 

Suppose the adversary overruns the consensus in a shard and commits a fraudulent shard-block. 
Other minters, who operate in the quilt mode, obtained only the patch of the shard-block and, 
unable to verify whether all the transactions initiated the state change occurred fully according to 
the rules of the protocol, accept the patch as valid. 

To verify the shard-block and make sure that it is valid, a node must obtain the entire shard-block 
from the adversary, but the adversary can ignore such requests, being aware of the consequences. 

Suppose there are a number of fishermen who constantly search blocks for faults and are 
authorized to trigger an alert in the case of data non-availability. The adversary understands that he 
has little time to profit from his fraudulent behavior. The only option is to try to exchange his coins 
for an off-chain asset as quickly as possible, before the fraud is detected. 

The adversary will likely turn to major players who can instantly accept a large transaction, which 
will include stock exchanges, market aggregators, providers of financial services etc. Given that such 
players are most likely to become victims of attacks and that they operate with significant coin 
volumes, they have strong incentives to run master-nodes to assure better security for themselves. 

At the same time, as such services aggregate large numbers of resources, they will likely have 
significant constant coin reserves. Considering that minting provides additional income and due to 
the fact that, in Dynemix, minters are allowed to unstake almost instantly, which means that staking 
most of the reserves will not deteriorate their liquidity, such services are incentivized to participate 
in minting as the largest stakeholders. 

Combining these circumstances, we can conclude that the largest stakeholders will presumably run 
master-nodes, which will verify the entire blockchain and will be the most likely victims of fraud 
attempts. Under such assumptions, it seems logical to grant such players the authority to alert the 
network in the case of a fraud suspicion. Since there is still a small chance that even a major 
stakeholder may abuse his powers to harm arbitrary minters, an aggregate claim of three master-
nodes is required for a full-scale alert. 

Suppose that Alice, Bob, Carol and Dave run stock exchanges. Malicious Malory captures a 
consensus supermajority in a shard and adds a fraudulent transaction to the shard-block. This 
transaction transfers funds to Malory’s account on Alice’s stock exchange. 

a) Alice does not run a master-node. 

Alice is careless enough not to run a master-node while dealing with large money flows. She 
accepts Malory’s fraudulent transaction and commits a counter off-chain asset to Malory. 

Bob runs a master-node and requests data from Malory, but Malory does not respond. Bob 
suspects Malory of fraud and sends alerts to other authorized fishermen nodes. 

Bob presumes that if Malory is an adversary, she may likely have tried to transfer funds to a 
stock exchange (possibly Alice’s). Even if Bob does not care about the safety of the system and 
the suspicious shard-block does not directly affect Bob’s funds, he is not interested in letting 
Alice profit off of this situation, since Alice is Bob’s competitor. Furthermore, causing economic 
damage to Alice is indirectly beneficial to Bob. 
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Carol and Dave, having come to the same conclusions, agree with Bob, and together they 
trigger an alert in the system. 

After the network ensures that Malory’s shard-block is fraudulent or unavailable, the shard-
block gets banned, as do Alice’s funds that were received from Malory. Malory gets away with 
the off-chain assets she received from Alice, and Alice is left with nothing. 

This is why Alice should either run a master-node herself or at least wait until an alert time 
window ends, assuming that, if no alert was triggered by the master-nodes, Malory’s shard-
block must be valid. Considering that Alice runs financial services, she is interested in 
providing a quick response to her clients and keeping herself safe, which is why she will likely 
prefer to run a master-node of her own. 

b) Alice runs a master-node but does not trigger an alert. 

Alice runs a master-node and finds out that Malory’s shard-block is unavailable, but she is too 
lazy to communicate with other master-nodes to trigger a global alert. She has already made 
her decision and does not accept the transaction from Malory, as she is suspicious that the 
shard-block is fraudulent. Since she has no incentive to trigger the alert and does not care 
about the safety of other users, she leaves the situation to the discretion of other participants. 

In the case that all master-nodes suddenly turn lazy, they may find themselves in a fork, 
because, not being alerted, the network accepts the fraudulent shard-block as valid. This is 
why it is not reasonable to avoid their fishermen’s responsibility if they count on keeping their 
data consistent with the entire network. 

This example shows that major stakeholders are naturally interested in verifying blocks for their own 
protection, and we do not need to apply additional incentives for fishermen. At the same time, they 
are not expected to abuse their powers to DDoS minters, as it makes no economic sense for them 
and they are most interested in keeping the system operating stably. Moreover, the identities of 
major actors will likely be publicly known, and direct malicious behavior may cause reputational 
losses as well as various off-chain punitive measures applied to such actors. 

Thereby, we circumvent the fisherman’s dilemma and create a solution that can operate in a 
rational environment. 

4) Master-nodes and decentralization 

The presence of a limited set of nodes with special authorities raises a question of centralization. At 
first glance, it may seem that our solution reduces the decentralization level of the system, but in 
practice it does not. 

Master-nodes cannot directly influence the state transition process but can only point out a possible 
fault. After a fisherman triggers an alert, the entire network investigates the situation and decides 
the fate of the specified shard-block. 

The only threat that a malicious master-node can pose is the possibility of increasing the traffic load 
for a minting node by triggering an arbitrary false data non-availability alert. To accomplish it, the 
adversary needs enough coins to simultaneously have three of his nodes among the largest 
stakeholders. Considering that Dynemix’s design does not stimulate stakes aggregation (minting 
pools or similar aggregators), the adversary will likely need to obtain the required amount so that it 
is in his direct possession. Given the number of coins needed to do this, it is hard to imagine a 
reason that a player of this magnitude would engage in such an activity. 

In the case that numerous abuses are detected in the system, it is possible to adjust the rules and 
tighten the alert requirements, but we believe that this measure would be excessive, and the 
problem is unlikely to emerge. 

In addition, the system can easily operate in the quilt mode even without a single master-node. The 
absence of master-nodes will lead to the following consequences: 
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a) Security will be reduced to the level of quilt-layer guarantees. 

If none of the authorized fishermen actually run a master-node and perform fishermen 
functions, the adversary may succeed with a shard takeover attack. 

The adversary, however, will not be able to distinguish whether any of the fishermen are 
actually performing data checks at any given time and adjust his strategy in advance. Given 
that any unsuccessful attempt will result in the loss of his Sybil accounts’ stakes, we may state 
that the mere implementation of the fishermen concept already provides additional security, 
although we cannot formally define the degree of the security boost. 

b) History can become unavailable. 

Although no one restricts nodes from keeping the full blockchain history, there is no point in 
full nodes keeping data longer than proposed by the protocol specification. 

As the system scales, the growth of storage overhead may become an obstacle to storing the 
entire blockchain, unless it is required for a particular purpose (for example, if the node is 
hosting a block explorer or a similar service). 

c) Data-availability guarantees will be reduced. 

If we assume that no one in the network accumulates shard-blocks, the transaction data will 
be obtainable only directly from the minters who built the block. Given the small number of 
participants in shard committees, there can be situations when the transaction data is 
temporarily unavailable. 

This will not affect the opportunity to access the balances of any accounts or to send and 
receive payments, which means that the system will still work fine, and users’ funds will not be 
threatened. Without complete data, however, upon receiving funds users will not be able to 
identify the sender or amount of each transaction. 

Taking into account that master-nodes cannot influence the state transition process and that their 
presence is not strictly necessary for the system’s operation, we can state that the decentralization 
level reached in the quilt mode is not seriously affected by the presence of authorized master-
nodes. 

8. Overall security 

1) Opposite attack strategies for different layers 

The concept of authorized master-nodes brings with it a massive security boost due to the fact that 
breaking the master-node layer defense employs a totally different attack strategy than the one the 
adversary would need to execute to take over a shard consensus. 

a) A shard takeover strategy 

To approve a fraudulent shard-block, the adversary needs to control > 2

3
𝑚 members of a shard 

committee. To accomplish this the stake should be split among a large number of Sybil 
accounts. Given the bin-sorting of the global appointed minters’ committee among the 
shards, concentrating large stakes in a small number of Sybil accounts will not commonly 
allow the adversary to control more than 1–2 members of each shard committee, and the 
adversary will have to target different bins by placing stakes of different sizes. 

b) A master-nodes takeover strategy  

To breach the master-node-layer security, the adversary needs to control all except two 
authorized master-nodes. Given the 200 nodes limit, this would require controlling a stake of 
the size more than 198 times larger than the stake of the third largest stakeholder. This means 
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that the adversary needs to accumulate large stakes on a small number of accounts, which 
contradicts the shard-takeover strategy. 

Combining the number of coins needed to control the required number of master-nodes and at the 
same time having the chance to take over a shard consensus, we may presume that this model 
provides sufficient security. We cannot formally define the amount of resources needed for a 
successful attack, as it depends highly on the actual stakes dispersion, but intuitively we can 
presume that security guarantees will likely be more than sufficient. 

The master-node security layer can be also breached by a successful DDoS attack. A 
simultaneous DDoS of 198 professional nodes, however, which can also engage several instances 
run in different locations, is a highly unlikely scenario. 

2) Merging two triangles 

By merging two layers with different architecture, we have managed to provide a multi-layer 
solution to the scalability trilemma without the need to sacrifice either security or decentralization. 

 

The quilt layer provides more decentralization, as it features much lower hardware and bandwidth 
requirements for nodes that operate on this layer. At the same time, security on this layer, though 
comparable to the security level of classic PoW blockchains, does not seem to be strong enough to 
satisfy our high standards. We may state that the quilt layer features high scalability and 
decentralization but lacks security. 

 

The blockchain layer, being not fully affected by sharding, lacks decentralization, for as the system 
scales up, the computation, storage and traffic overhead grow linearly. At the same time, it provides 
strong security, as the adversary would need a large number of resources to gain control of the 
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fishermen nodes. That is why, on the blockchain layer, decentralization is sacrificed for the sake of 
security. 

 

Being combined, two layers compensate for each other's shortcomings, at the same time keeping 
the advantages of each layer intact. The master-node layer provides additional security for the quilt 
layer but does not reduce the overall decentralization achieved. 

9. Achieved scalability and its further possible increase 

1) Efficiency of the current design 

The main purpose of sharding is to distribute the computation and communication overhead of 
peer nodes, allowing the system to process more transactions with the same hardware and 
bandwidth assumptions. 

If our sharding solution features the global state, which is updated on all nodes, it raises the 
question: how does it reduce the overhead if it still requires propagation of the same amount of data 
as classic non-sharded blockchains? 

To begin with, our solution allows communication overhead to be optimized for participating 
replicas and at the same time to provide more DoS resilience by significantly increasing the total 
number of participants. 

Another important matter is that our sharding scheme allows to solve several issues that emerge 
from other features of the protocol design. Namely, it helps with the proper implementation of 
Guess My Block game and the economic model of Dynemix. 

Finally, the protocol was initially designed to operate in the quilt mode, which provides a significant 
performance boost, especially after the implementation of homomorphic encryption. At the same 
time, the system can be initiated with all nodes operating in the blockchain mode (hence being 
master-nodes), and smoothly transition to quilt and the subsequent encryption implementation 
without the need for significant architecture reconsideration. 

We find it dangerous to start directly in quilt mode, due to the safety issues described above. During 
its infancy, the system should operate in the blockchain mode, which provides stronger validity 
guarantees and features a higher adversarial threshold without engaging authorized fishermen 
master-nodes. After the potential for scalability in this mode is capped, the system can be switched 
to the quilt mode, which will further increase its scalability. Finally, when the appropriate balance 
encryption scheme is developed, it can be painlessly implemented into the system, which will 
already be operating in the quilt mode. 
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As the protocol allows subsequently switching between modes of operation, we can model the 
stages of development and estimate how the system will scale over time. 

In our tests and calculations, we modeled the computation and communication capabilities that 
most users can meet using affordable hardware. Our particular setup is as follows: 

• 10-megabit bandwidth; 

• 300 ms average latency; 

• Intel Core i5 7360U (a mid-range outdated laptop CPU); 

• Low-range SSD. 

We assume that users should not experience a 100% hardware load, as it would be inconvenient, 
which is why we limit the use of the CPU to a single core. 

a) The blockchain mode (or the master-nodes mode) 

Dynemix blockchain is a chain of master-blocks that are assembled from a set of shard-blocks. 
Shard-blocks contain transactions themselves as long as a lot of metadata, which is why the 
complete master-blocks take significant time to be transmitted and validated. 

Given the described setup, the system will be able to process approximately 600 TPS using a 
single CPU core for computation. 

b) The quilt mode (or full nodes mode) without encryption 

This mode operates with the state of the entire system, which is updated by quilts – data 
structures that contain only a part of the information of the blockchain blocks. Full nodes 
obtain the current global state and then only apply quilts to execute state transitions. A quilt 
can be derived from the master-block, but the block cannot be restored from the quilt. 

Full nodes experience greatly reduced computation, traffic and storage overhead, as they do 
not need to process transactions (except while directly assembling shard-blocks). 

Given the setup described, the system will be able to process approximately 2,400 TPS using a 
single CPU core for computation. 

c) The quilt mode (or full nodes mode) with encryption 

Homomorphic encryption with ZK-proofs for each transaction will severely increase both 
computation and communication overhead, and the only option for providing a scalable 
solution is switching to the quilt mode. The problem is that, currently, we cannot predict the 
actual parameters, but we can assume that the more the overhead increases, the more 
efficient the quilt solution will become. 

We can clearly see that the system is capable of providing decent scalability even with very modest 
setup assumptions. 2,400 TPS is an enormous number, which can be capped only when the system 
gains worldwide popularity. We assume that by that time we will be able to significantly raise 
hardware and bandwidth assumptions, which means that Dynemix will be unlikely to suffer from 
insufficient scalability. 

Now, upgrade our setup to the following specs: 

• 100-megabit bandwidth; 

• 300 ms average latency; 

• Intel Core i7 9700 (a mid-range outdated desktop CPU); 

• Mid-range SSD. 
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In this case, we assume that the user can share the entire bandwidth and CPU power, considering 
that the same level of performance is achievable with only a partial load on average consumer-class 
modern hardware. Under such assumptions, performance will rise approximately to the following 
numbers: 

• 4,000 TPS in the blockchain mode; 

• 16,000 TPS in the quilt mode. 

Given the specified results, we believe that the current design will provide sufficient scalability at any 
stage of the system’s development, while at the same time keeping hardware requirements 
tolerable for most consumers around the world, thus maintaining the desired level of 
decentralization. 

For this reason, we did not go for a complete sharding scheme – we simply do not see the necessity 
to push scalability further, and we find it more reasonable to employ a more robust and efficient 
partial sharding design. 

We still cannot build any reliable precise assumptions about performance, however, in the case of 
the implementation of homomorphic encryption. We concede that an actual encryption scheme 
could require a much higher overhead than expected, and it may happen so that we will face the 
necessity of pushing scalability further by adjusting the design and accepting other tradeoffs. 

2) Splitting state into active and archive 

With the growth of the userbase, the storage overhead may become the first bottleneck of the 
system. A billion users’ states would weight about 120 GB raw and 540 GB in an encrypted form, 
which likely exceeds the amount of storage that an average non-professional minter is ready to 
share. Synchronizing a state of that size would also be a serious challenge for most users. 

One possible solution to reducing storage overhead is to shard and archive the state of inactive 
accounts. Considering the available statistics, we may expect that many addresses may be inactive 
for long periods and that only a minority of users will issue transactions at least monthly. 

Under such assumptions, it is reasonable to split the system state into different layers, which will 
then be stored and accessed according to different rules: 

a) Active state 

This layer includes everything needed for block production (stakes, IMINs) and states of 
accounts that were active at least once within a specific period of time (e.g. last month). If an 
account doesn’t change its state in the determined time interval, its state converts to “archive.” 

b) Archive state 

After the account stays idle for a month, its state is archived and then deleted by most nodes. 
The archive is sharded and stored on a redundant number of nodes, from which it can be 
easily recovered whenever necessary. As user clients also store states along with cryptographic 
proofs of their validity, when an archived account issues a transaction, the client includes the 
state, and the transaction is processed without any additional delay. 

These measures can significantly lower the storage overhead at the cost of a slight increase in traffic 
overhead, which is overall an acceptable tradeoff. 

3) Implementing complete sharding (without global state) 

This is a more challenging goal. Though we could keep many elements of the current design, it 
would still require a serious architecture reconsideration, as new solutions for several emerging 
problems need to be developed. 
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Fortunately, certain features of the current design can significantly help build an appropriate 
sharding solution with isolated states. In particular, the Guess My Block game can reliably ensure 
that both parts of a cross-shard transaction will be processed instantly and simultaneously, which 
means that we can provide a solution to the train-and-hotel problem that will fit our finality latency 
standards: namely, we can use a two-phase consensus to finalize a cross-shard transaction. 

We will still have to accept certain tradeoffs, however, that will inevitably degrade some properties 
of the system. We find the current design almost perfectly balanced from the point of view of 
targeted properties and setting, which is why we consider complete sharding the last resort for the 
scalability issue. 

Furthermore, it is not currently clear whether we will need to push scalability this far and whether a 
complete sharding solution will actually provide a significant scalability boost that would be worth 
the concomitant trade-offs. 

10. Partitioning and forking 

1) Partitioning and CAP theorem 

From the point of view of CAP theorem, Dynemix is consistency-focused. We can conditionally call it 
a CP system, but according to the initial notions of CAP theorem, it is more appropriate to call it “C 
and moderately P.” 

The problem is that Dynemix cannot fully tolerate arbitrary partitioning. As the system operates 
according to the weakly synchronous model, liveness holds only as long as a required threshold of 
participating replicas is allocated in the same partition. 

In the case that a node is not able to get enough responses from the other replicas by the end of the 
subslot, it assumes that it has been isolated in a partition and locks in the recovery mode, whereby it 
waits until a valid master-block is seen. Upon restoring connectivity and receiving the current 
master-block, the node restores consistency with the rest of the network and rejoins the protocol. 

It is easy to conclude that if the system splits into a number of partitions, none of which contain 

enough replicas to assemble at least a single shard-block and then reach a master consensus (3

5
𝑀), 

all replicas will enter the recovery mode and the protocol will stall. 

Given the assumed network topology of Dynemix, we consider this highly unlikely. A practical 
partitioning threat refers mostly to situations in which a small fraction of nodes gets isolated from 
the major network segment, which should be handled fine by the Dynemix protocol. 

Nevertheless, what if this actually happens and the system stalls due to the violation of synchrony? 
We assume that this is an extraordinary situation, which indicates a global cataclysm. In this case, it 
is reasonable to let the system be recovered in manual mode after the consequences are overcome. 

We can theoretically propose an automatic fallback recovery algorithm, but the problem is that by 
doing so we will inevitably extend the communication model to asynchrony or partial synchrony, 
with all their respective consequences. We would likely no longer be able to guarantee either 
adaptive corruption tolerance even against a mildly adaptive adversary or sequential consistency, 
which seems like a heavy price to pay. 

We have chosen consistency over availability for the following reasons: 

a) We believe that consistency is preferable for a consumer-level payment system. 

If we assume that the system will be used by a general audience, we cannot go for availability 
and allow weak (eventual or probabilistic) consistency. This results in the possibility of forks 
and complicates the notion of finality (as we noted, fast finality is one of the crucial features we 
need to achieve). 
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Common users perceive a payment system as something solid and reliable. This means that if 
the transaction is processed, no rollback is expected to occur. If the user is isolated in a 
partition, it is obviously better not to provide him with an incorrect state and not to accept his 
transactions than to allow them to be rolled back after the system recovers. 

Availability may be an option for specific blockchains focused on professional use, when we 
assume that users understand the consequences of inconsistent system operation, but this is 
clearly not our case. 

b) Homomorphic encryption does not allow forks to be merged. 

If balances are not encrypted and the system suffers from partitioning, it is possible to adopt 
merging rules that are applied when the network recovers. Transactions from one fork can be 
relocated to the other fork (unless double spends occurred), and users will not suffer a rollback 
when the lesser chain is orphaned. If balances are encrypted but the system uses a UTXO 
model, relocation of transactions is also possible. 

A homomorphically encrypted account-based state, however, does not allow fork merging. 
The reason is that ZK-proofs become invalid if the state changes. This is why if a user receives 
funds in partition 𝐴, his transactions in partition 𝐵 will become invalid for partition 𝐴. 

2) Forks 

By being consistency-focused and featuring a BFT-style consensus model, Dynemix is designed to 
strongly maintain a linear blockchain structure, which means that no forks can occur in the system 
unless an attack is committed. 

All shard committees for block 𝐵𝑛 are formed according to the information included in block 𝐵𝑛−1. A 

master-block is considered valid if at least 3

5
𝑀 committee members voted for it. This means that two 

valid blocks of one height can appear only if a number of minters sign both of them. This cannot 
happen unintentionally, and it clearly indicates the malicious behavior of such minters. 

Since we can be sure that each fork appearing in the system signifies an attack, we can apply 
punitive measures to the participants in the alternative fork. 

Assume that chain 𝐴 is the main fork of the network that is minted by honest minters and that 
Malory is an adversary who wants to commit a double spend. To accomplish this, Malory issues 
transaction 𝑇𝑀 , which transfers her funds to a stock exchange. Minters include the transaction in 
block 𝐴𝑛+1 , after which Malory exchanges her funds into an off-chain asset. Now Malory wants the 
network to switch to an alternative chain in which 𝑇𝑀 never happened and her funds stayed in her 
account (or were transferred somewhere else). 

She chooses an arbitrary branching point, which obviously should occur before block 𝐴𝑛+1. Suppose 
she chooses block 𝐴𝑛 as the parent and starts alternative chain 𝑀 from height 𝑛 + 1. After she 
completes all the preparations, she reveals her fork to the network. Suppose it happens on height 
𝑛 + 3. Now all nodes in the network must decide which chain they are going to join. The decision is 
made according to the following rules: 
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a) Nodes that witnessed transition 𝐴𝑛  → 𝐴𝑛+1 will not buy the bait. 

All nodes that are constantly online and keep the record of the entire blockchain (at least the 
hashes of blocks) know that block 𝐴𝑛 was followed by block 𝐴𝑛+1. At the time block 𝐴𝑛+1 was 
propagated, block 𝑀𝑛+1 was not observed in the network and hence must have been revealed 
later, which is why the nodes consider chain 𝐴 valid and chain 𝑀 adversarial. They inspect the 
latter and slash the stakes of minters who participated in that chain (if any of them have not 
unstaked). 

b) Nodes that witnessed any block in chain 𝐴 since 𝐴𝑛+1 will not buy the bait either. 

If the node did not witness the transition but is aware of any block on chain 𝐴 between the 
branching point (height 𝑛 + 1) and the current block (height 𝑛 + 3), it comes to the same 
conclusions as in the previous case. For example, if the node is aware of block 𝐴𝑛+2 and did not 
see any alternative blocks at that height, it means that 𝐴 must be the valid chain. 

c) Newcomers or nodes that did not synchronize with the network since 𝐴𝑛 will have to 
choose a fork. 

If the node was last online before the branching point or if it simply has just joined the 
network, it cannot know which chain was minted secretly by the adversary and which one was 
built by honest minters. 

3) Chain selection for non-witnesses 

At this point, we address the problems of subjectivity and nothing at stake. PoW design is 
considered objective, for any node can choose the correct fork without the need to trust third 
parties, while PoS is inherently vulnerable to posterior corruption and a newcomer may be unable to 
distinguish the adversarial chain from the honest chain relying on the protocol rules exclusively, 
which is why PoS protocols are subjective. 

We do not support this division, however, as we do not believe that overall objectivity is practically 
achievable with the help of any blockchain design. Despite the fact that Bitcoin may be objective on 
the protocol layer, in practice user–protocol interaction necessarily includes intermediate layers (e.g. 
client, operating system, hardware etc.), which cannot satisfy the same objectivity conditions. This is 
why we consider any blockchain implementation in practice subjective to the same extent. 

If we assume that a user can verify a Bitcoin blockchain only with the help of software and hence 
needs to trust the provided result and presume that the software was not corrupted, providing the 
current state of the blockchain along with the software doesn’t make it any more subjective. 

For this reason, the problem of chain selection for newcomers can be solved trivially – the hash of a 
recent master-block should be provided along with the client, or a set of trusted bootstrapping 
nodes should be predefined for initial synchronization. We do not believe that any more 
sophisticated solution is required, as subjectivity cannot be circumvented no matter how 
complicated an algorithm we propose, and we see absolutely nothing wrong with that. 

The only category left unaddressed so far is that of nodes that were last online before the branching 
point and did not witness any blocks above 𝑛 height. 

The main problem with proposing a secure algorithm for this case is nothing at stake. While the 
work applied to a block constructed according to PoW design cannot be transitioned to an 
alternative block of the same height, in PoS protocols the same stakes can be used to construct an 
arbitrary number of parallel forks at a near-zero cost, which makes them vulnerable to posterior 
corruption. A possible solution to the problem was described by Vitalik Buterin and denoted as a 
weakly subjective model. In short, the solution looks as follows: 

• Adopt a slashing algorithm, which penalizes stakeholders who behave incorrectly (for 
example, vote for more than a single block at one height); 
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• Lock stakes as security deposits for 𝑁 blocks to prevent stakeholders from reverting history 
starting from a branching point less than 𝑁 blocks deep without the threat of losing their 
stakes; 

• Set checkpoints at the height at which stakes are unlocked, beyond which no alternative forks 
are taken into consideration. 

This means that if the node was last online fewer than 𝑁 blocks ago, the blockchain keeps roughly 
the same level of security as PoW blockchains. If the node was unavailable for more than 𝑁 blocks, 
the protocol cannot guarantee secure chain selection for it anymore. 

According to the initial idea, 𝑁 should be set to cover a large time interval, possibly reaching months 
to be effective, which means that stakeholders have to freeze their deposits for a long time. 

Although this solution partly solves the nothing at stake problem (at least for 𝑁 range), we do not 
believe that such a design is optimal for Dynemix for the following reasons: 

a) Locking stakes for a long period severely deteriorates several properties of the system. 

The main argument against long-term deposits is a concomitant dramatic change in the 
quality and volume of the global stake pool. 

One very important achievement of the Dynemix design is the involvement of ordinary users 
in the support of the system. Not only did we manage to lower the hardware requirements for 
minting nodes to the level of consumer hardware, but we also built an economic model that 
does not create any obstacles to users’ becoming stakeholders. 

Unlike most blockchains, in which block constructing tends to be a more professional activity 
with a high participation threshold, Dynemix is designed to be a system in which an average 
user can participate on equal footing with professional block producers. This brings Dynemix 
much closer to being a true peer system and the embodiment of the initial ideas behind 
cryptocurrency technology. 

The ability to quickly unbond and spend a user’s funds is an essential feature that helps 
achieve this goal. If we deprive users of this opportunity, this will instantly rearrange the stake 
pool in the favor of professional participants. The decision to freeze funds for half a year 
requires serious consideration and is obviously not something an average user can easily 
afford. 

Moreover, this will also affect major stakeholders who provide financial services and need 
liquidity. If we allow a quick unbond, stock exchanges and similar actors can stake most of 
their reserve without any threat to their activities. Long-term deposits, however, can deprive 
them of the necessary liquidity. This feature is also crucial for the economic model of Dynemix, 
which relies on the assumption of near-equal liquidity of staked and free coins. 

This shows that implementing long-term deposits will almost certainly decrease 
decentralization and security both for full nodes and master-nodes. This is an unacceptable 
tradeoff, especially considering a highly disputable positive effect of this solution. 

b) The proposed solution helps only a small fraction of users. 

The weak subjectivity model may be relevant to blockchains that allow forks (featuring a 
common prefix design and the longest chain rule), but Dynemix is strongly consistent, and no 
forks are supposed to occur (unless a very powerful adversary commits a forking attack). 

For this reason, a potential attack can affect only a small share of users who satisfy both of the 
following conditions: 

• They were last online before the branching point; 

• They have at least one of the adversary’s nodes in the bootstrapping list. 
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In the case of an attack, the model described can only provide more protection for this 
category and should not generate any notable boost to the entire system’s security, as most 
nodes will stay completely immune to attack attempts. 

Furthermore, the affected nodes will only be subjected to a delay caused by the necessity of 
choosing the correct chain. Considering that these nodes will presumably need some time to 
synchronize with the network in any case, this does not seem to be an outstanding 
achievement for the adversary. 

In addition, the weak subjectivity model provides no solution if the branching point occurred 
more than 𝑁 blocks into the history, which means that the adversary can simply prepare for 
the attack and commit it after 𝑁 passes. In this scenario, the attack will likely affect many fewer 
users than in the case of a more rushing attack, but at the scale of the entire system, the 
difference may be barely notable. 

Given the stated arguments, we see no reason to implement the proposed model in its initial form. 
Instead, we adapted the principles of the model to the design of Dynemix. 

The deposit lock period is set to two blocks. This allows users to quickly unstake and provide the 
necessary liquidity for all categories of minters. Such a short deposit period protects them only from 
double signing any data before each block is propagated and settled, since it provides just enough 
time to penalize Byzantine actors but does not solve the nothing at stake problem in terms of 
posterior corruption. 

If the node encounters two conflicting blocks at one height that descend from an arbitrary 
branching point in history, given that the node has not witnessed any blocks after the branching 
point, the following resolution algorithm is proposed: 

a) Figure out whether both forks are valid. 

The node finds a branching point and requests a set of IMIN transactions with cryptographic 
proofs from the common parent master-block (𝐴𝑛) and the signatures of the minters of the 
first divergent master-block (𝐴𝑛+1 and 𝑀𝑛+1) from each chain. According to IMIN transactions 
and the hash of 𝐴𝑛, the node establishes the shard committee’s designation for 𝑛 + 1 height. 
The node verifies that both 𝐴𝑛+1 and 𝑀𝑛+1 were built according to the rules: i.e. both were 
signed by the required threshold of minters. 

On this stage, the node needs to download only a small portion of data from three blocks, 
which is affordable for common users even after the system scales up (approximately less than 
5 MB of data for a 100 million userbase). 

If block 𝑀𝑛+1 does not meet the requirements, the decision is instantly made in favor of chain 
𝐴. If Malory has managed to obtain enough signatures to construct a valid 𝑀𝑛+1, however, the 
node proceeds to the next step. 

b) Figure out the preferences of trusted nodes. 

If Malory presented a valid fork, this already means that she has put a lot of effort into the 
attack, considering the number of minters’ signatures she has managed to obtain (or control 
initially). On that point it is reasonable to bring in subjectivity and to offer the user decide him- 
or herself. 

To help the user with the choice, the client investigates which fork is supported by nodes that 
are considered to be run by powerful actors who are unlikely to engage in fraud. This may 
include stock exchanges, developers, block explorers etc. This may also include nodes that 
gained a certain reputation from the point of view of the personal experience of the user’s 
node. There can be different approaches to the construction of such a list, and no particular 
rules are needed on the protocol level. 
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The information collected should be sufficient for the user to figure out which fork is 
legitimate. At the same time, this kind of research will not consume any noticeable amount of 
traffic and can be performed in a couple of seconds regardless of the current system load. 

Some users, however, may prefer investigating both chains more precisely. 

c) Download data from both chains and estimate which of them contains more voting power. 

If the user for some reason cannot make a decision in the previous step and wants to discover 
how much stakes each fork accumulates, he may download data from both chains and 
conduct research in the following order: 

• The node establishes the total stakes in the system and builds the list of stakeholders at 
height 𝑛 (the accuracy depends on the depth of the research). 

• The node downloads data from each chain block by block and discovers the votes of the 
stakeholders. Service transactions (i.e. stake, unstake and IMIN) refer to the parent block 
and thus are TaPoS-compatible. They cannot be replicated by the adversary without re-
signing, which is why whenever the node finds such a transaction issued by a 
stakeholder, it is considered a vote for a particular chain. If a stakeholder is found placing 
transactions in both forks, the node concludes that this account is compromised and 
does not count its votes. 

By the end of the investigation, the node will have the following information (the accuracy 
depends on the depth of the research of the stakes at height 𝑛 and the number of verified 
blocks from both concurrent chains): 

• the number of accounts that voted for each chain; 

• the number of stakes accumulated in each chain; 

• the current amount at stake (funds that were not unstaked and that Malory actually risks 
losing). 

This information will provide a comprehensive picture of the forks and allow the user to make 
a choice. The ratio of certain parameters may be also set for non-interactive selection. For 
example, if the client concludes that more than 99% of the stakes voted for chain 𝐴, this 
obviously must be the valid chain, as Malory is extremely unlikely to be able to collect that 
many stakeholders’ signatures, even if the branching point occurred far back in history, which 
means that the client is able to make a reliable choice without user involvement. 

The last step, however, is relevant only to the period when the system load is relatively low and the 
investigation will require a tolerable traffic overhead. If the system scales up to a 100 million 
userbase, downloading the complete data from both chains may seem unreasonable for the 
average user. If Malory sets a branching point a month deep and builds a chain up to the current 
height, the data required for the complete investigation will likely exceed a terabyte. 

For this reason, we believe that, given the properties of the Dynemix protocol, we should not 
necessarily concentrate on a formal approach to the chain selection rules. Subjective selection may 
be a preferable option for most users, who will likely prefer to make a choice according to the 
information on trusted players’ preferences rather than download and process terabytes of data. 

Bringing a bit more subjectivity to the table also favors security. If we apply a formal approach, 
Malory will know particular conditions that will allow her to succeed. Transitioning chain selection 
rules from the protocol layer to the client layer, however, makes Malory’s perspective uncertain. She 
cannot reliably predict whether a single user will fall for her trap, and, if someone does, whether she 
will be able to take advantage of it. Although there can be nothing at stake, at the same time there 
can be nothing in the guaranteed expected return. 
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11. Finality 

Earlier in this chapter, we addressed the issue of finality, stating that it should be achieved as quickly 
as possible (at worst, within 30 seconds after the transaction is issued). At the same time, we did not 
explain what finality exactly means in relation to Dynemix. 

The notion of finality differs for blockchain systems of different consensus design. 

In Bitcoin and other systems that feature probabilistic consistency, finality increases exponentially 
with each new block mined on top of the block that contains the transaction. The degree of relative 
finality can be considered individually depending mostly on the importance of the transaction to 
the recipient. If the transaction features low value, one may consider a couple of blocks sufficient. In 
the case of a valuable transaction, it may be reasonable to wait for 6–10 confirmations. 

In the case described, reaching finality is a prolonged procedure. It is a fundamental boundary of 
any system based on the common prefix design, which is why we initially rejected this architecture 
for Dynemix. 

In consistency-oriented blockchains with a BFT model of consensus, finality is reached after nodes 
achieve a consensus or other special events occur, and in many systems, it depends on the number 
of approved blocks on top to a much lesser or even zero extent. 

In Dynemix, we can outline the three main checkpoints of finality: 

a) Shard-block commitment (approximately 4–5 seconds after the transaction is received by a 
minter) 

After the members of a shard committee reach a Byzantine agreement, the shard-block may 
be considered finalized under the assumptions that both shard- and master BA 
supermajorities are honest and the system’s liveness is not breached. 

This means that the transaction may be reverted only in tree cases: 

• The system is under an attack that requires controlling the BA supermajority within the 
shard (a shard takeover attack); 

• The system is suffering an attack on liveness or partitioning due to a network 
malfunction. 

• The master consensus supermajority is corrupt and intends to ignore the shard-block. 

Since neither event is expected to occur under normal conditions, this checkpoint provides 
finality guarantees strong enough for most transactions, except ones of very high value. 

Since shard-blocks (or patches) are exchanged only among the minters of the current block, 
however, most users will not have access to them and hence will have to wait for the next 
checkpoint to get the confirmation. 

b) Master-block approval (approximately 8–9 seconds after the transaction is received by a 
minter) 

After a master consensus is reached, the master-block cannot be reverted, which means that, 
upon receiving the master-block, the user can consider the transaction finalized with only a 
negligible probability of reversal. 

If there is a fraudulent shard-block approval by the corrupted consensus supermajority, 
however, the shard-block that contains the transaction can be banned, and the transaction 
can be reverted, which means that in some cases users may prefer to wait until the final 
checkpoint is reached. 
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c) Block validation by master-nodes (approximately 18–19 seconds after the transaction is 
received by a minter) 

If the user deals with high value transfers, it is reasonable for him to run a master-node and 
verify shard-blocks himself. In this case, the transaction may be considered fully finalized when 
the user verifies the shard-block that contains the transaction and concludes that it has been 
assembled according to the rules of the protocol. 

If the user does not run a master-node, he should wait until the next block is committed. By 
that time, the previous block should be verified by the master-nodes, and in the case that no 
alarm was triggered, the block must be valid, and the node may consider it fully finalized. 

After the last checkpoint is reached, the transaction cannot be reverted unless a massive 
attack is committed that can fully breach all levels of the system’s security. Additional blocks 
minted on top of the block that contains the transaction do not grant any stronger finality 
guarantees. 

V. Economics of Dynemix 
The economic model of Dynemix is described in detail in a separate paper. In the following chapter, 
we will briefly outline its main features and some issues that need to be resolved before we can 
implement it on the full scale. 

1. Economic Model of Dynemix 

1) Brief Description 

The economic model of Dynemix features a breakthrough design of a decentralized algorithmic 
central bank capable of simultaneously balancing the value of native coins against fiat currencies 
and directly maintaining a targeted interest rate, which allows to indirectly target an optimal level of 
inflation and output growth. 

Unlike previous attempts to build a cryptocurrency that is capable of performing the functions of 
money, which were concentrated around the concept of a stablecoin, we took a step further and 
designed a model of a stable economy. The key difference is that our model engages all channels of 
monetary transmission: 

a) When Dynemix is used as an ancillary currency in addition to an exogenous fiat currency, it 
balances the demand discrepancies that originate from the exchange rate and nominal 
interest channels, thus keeping the exchange rates stable. A significant upgrade over typical 
stablecoins is the ability to balance the value against all exogenous assets simultaneously 
instead of being pegged to a particular asset or a set of such, which provides independence. 

b) When Dynemix performs as a fully-fledged economy and an exclusive legal tender within a 
specific economic zone (up to the entire global economy), it can target a desired natural rate 
of interest directly and desired inflation and GDP growth indirectly. This feature is exclusive to 
our model and is not supported by any available cryptocurrency. 

In addition to that, the economic model of Dynemix doesn’t require any special assets as 
seigniorage-style models do. Dynemix operates exclusively with native utility coins, which 
circumvents the engagement of securities and the necessity to comply with the respective legal 
procedures and requirements of regulators. 
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2) Model’s Prerequisites 

The model requires a specific setting before it can be activated. Namely, the substantial part of the 
economy should be comprised of the real market. 

We assume that the simplified structure of demand is as follows: 

• The transactional fraction: coins that are perceived as a medium of exchange 

• The speculative fraction: coins that are perceived as a source of yield 

When the speculative motive dominates the demand, monetary effects spread very quickly, and 
expectations are mostly chaotic, which leads to a random walk price fluctuations on the stock 
markets in the short term. As long as coins serve to a large extent as income-generating assets, the 
efficiency of the model is highly limited. For example, being implemented into Bitcoin in its current 
economic state, the model would smoothen the price fluctuations to a highly limited extent at best. 

On the other hand, when the real economy develops to a substantial degree, it will introduce 
consistent trends, which will form unidirectional expectations. Combined with concomitant lags in 
the transmission scheme, this will highly raise the efficiency of the model. Simply put, if we want to 
implement a decentralized central bank, we need to build an environment similar to that of 
conventional central banks. 

2. From Launch to Implementation 

With the help of helicopter coins and the Liberdyne messenger, we managed to create 
prerequisites for the development of the real economy and the eventual subsequent 
implementation of the economic model of a decentralized algorithmic central bank. A possible path 
from the mainnet launch to the activation of the model can be described as follows. 

IMPORTANT NOTICE! 

In this section, we provide a possible scenario for the development of the platform that is not 
targeted as preferable. 

We would like to especially emphasize that herein we do not provide any guarantees of capital gain 
for coin acquirers. Moreover, we have already repeatedly expressed our negative judgement toward 
the use of dynes for speculation. 

At the same time, we are aware that, despite our efforts, Dynemix can face the consequences of 
speculative manipulation, which, however, are not expected to completely eliminate the possibility 
of further economic development. Moreover, speculations can benefit the economy of the platform 
in the way described below. For this reason, we address the model of economic development that 
involves a large initial influx of speculators, assuming that in other cases the process should run 
smoother. 

1) User types 

Depending on the behavior model, users can be divided into three categories: 

a) Investors, who will purchase dynes only due to their capital gain expectations 

Actions of this category are mostly harmful for the platform, as speculations hinder the 
development of the real economy, but with the help of the Liberdyne/Dynemix architecture, 
we have managed to create a model that presumably allows the platform to benefit even from 
the speculative demand. 

b) Users who are interested mostly in earning dynes by providing system support (reward 
hunters) 
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At the early stage, many will join the system with the expectation of receiving significant 
rewards. With the growth of the userbase and the depletion of proliferation potential, support 
of the system will cease to bring tangible income, but most users in this category will continue 
to use the system because by that time they will be able to assess all the benefits the platform 
provides. Therefore, over time, users from this category will move to the next category. 

c) Users who are interested in the system directly for its functionality (common users) 

Over time, this category should become dominant and ultimately be the basis for sustainable 
economic development. Though users will continue receiving rewards for their system 
support, with a large userbase each participant’s reward will be insignificant, so the system 
functionality should become the main reason for using Dynemix. 

As the platform develops, each of the categories will be present in different proportions and have a 
certain effect on the state of the system. Eventually, we should come to a state in which the 
absolute majority of users will represent the third category. 

The modeled period for the development of the Dynemix platform can be divided into stages. 

2) Investment stage 

a) Initial investments 

 

Assume that we face the worst scenario and nearly the entire initial token supply accumulates 
in the hands of investors who believe in the potential growth of the system and in the 
corresponding increase in the value of tokens. We can assume that many of them do not even 
intend to use the system and perceive dynes only as a tool for speculation, which renders the 
perspective of the development of the real economy highly uncertain. 

If Dynemix faces such a scenario, we can assume that speculations in any case will set some 
substantial market value of dynes. Although it may be nothing but a consequence of irrational 
exuberance and will not correspond to the actual potential of the platform, it will still 
contribute to the development of Dynemix as bait for reward hunters. 

b) The influx of reward hunters 

 

If the described scenario occurred in a typical PoS blockchain system, speculators would stake 
their tokens and accumulate all newly issued coins, thus keeping their share constant. Under 
such conditions, there would be no efficient means of escaping the speculative cycle. 

In Dynemix, however, on the early stages stakeholders will receive only 50% of the issued coins, 
while 50% will go to DOGs. Since our platform is designed so that almost any user can easily 
perform DOG functions without any investment and since the same amount of reward is 
distributed among all the DOGs online, it incentivizes them to start using the Liberdyne 
messenger as soon as possible in the chase of a larger reward. 

The more speculative pressure the platform suffers and the higher the market cap rises, the 
more attractive Dynemix becomes for reward hunters, as rewards grow higher in a fiat 
equivalent. Under such conditions, the influx of speculators inevitably causes a corresponding 
influx of reward hunters, which attracts more speculators and creates a feedback loop. 

c) Cycle of growth 

 

In the subsequent growth cycle, more reward hunters will be lured and the userbase will 
continue to grow. We should keep in mind that many reward hunters may also perceive dynes 
as a speculative asset, which makes their behavior closer to that of investors, but a fraction of 
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them will assuredly transform into common users, thus forming a basis for future economic 
development. 

The main reason for such a transformation is the decrease in the amount of the rewards for 
each participant with the growth of the userbase and the inevitable eventual depletion of the 
investment potential. At some point, rewards for DOGs will become so low that they will stop 
being perceived as tangible yield-generating assets. Users will start preferring to simply spend 
dynes for various low-value goods and services rather than hodl them in the expectation of 
capital gain. 

3) Stable stage 

a) The point of saturation 

 

The feedback cycle between investors and reward hunters cannot function eternally, and 
eventually the system will reach the point of saturation, at which the potential of growth will 
be depleted. Unlike the inherently scarce Bitcoin supply, Dynemix features constant 
exponential emission, and at some point, the growth potential will inevitably drop below the 
inflation rate. After that point, dynes will start to lose their attractiveness as a value-storage 
asset and will eventually transform into a pure medium of exchange. 

At the same time, the system will not always be attractive to reward hunters, as the size of the 
reward for each of them will constantly be reduced with the growth of the userbase. This 
stimulates the initial growth of the system, but in the mature state the platform becomes less 
attractive to reward hunters. 

We rely on the fact that at that point a substantial fraction of the userbase will consist of 
common users, and a sufficiently saturated financial market will form within the economic 
zone of Dynemix, which will help the system overcome the subsequent events. 

b) Market volatility 

 

Eventually, the speculative bubble will burst, and investors will start exiting Dynemix en masse. 
The process of investors' exiting in the worst case will be accompanied by sharp jumps in the 
exchange rate. This can be quite a difficult period, but we expect that at this point the system 
will be in demand by a large number of consumers, and a lot of the real market infrastructure 
will be developed within the ecosystem endowing dynes with significant utility value. 

During this process, some reward hunters will also exit, but most will likely transform into 
common users and remain in this role subsequently. 

The economic model of Dynemix has potential to circumvent this stage: since the 
implementation of a decentralized central bank turns dynes into a fairly stable monetary unit, 
it can influence expectations of investors, who instead of exiting the ecosystem of Dynemix 
can prefer to convert dynes into financial assets nominated in dynes, hence keeping their 
capital within the Dynemix economic zone. The extent to which such a behavior will prevail 
depends on a wide array of exogenous factors, which is why no reliable assumptions can be 
made at the current stage. 

 

c) Stabilization 

 

Eventually, dynes will completely lose their investment attractiveness and cease to be of 
substantial interest to reward hunters. The exchange rate will stabilize, and dynes will be used 
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as intended – a medium of exchange. At this point, we can implement the economic model of 
a decentralized central bank turning Dynemix into the first fully-fledged cryptocurrency. 

Thus, the architecture of Dynemix and Liberdyne is expected to ensure a smooth transition 
from the investment stage to the development of the real economy. At the same time, the 
platform should be capable of benefitting from the speculative period, using the investment 
capital for the initial attraction of the user audience. 

VI. Payment channels and smart contracts 

1. Payment channel technology summary 

One of the major flaws of the first blockchain implementations was the scalability issue. Since no 
solution was found that could allow this issue to be resolved on the blockchain layer without 
sacrificing security or decentralization, the developers turned to second-layer solutions. 

Payment channels are an off-chain solution that can take the load off the main layer and allow fast 
transactions to be made without the direct use of a blockchain. 

The most commonly known implementation of the payment-channel technology is Lightning 
Network. It is believed to be the solution to Bitcoin’s block-capacity issue. 

We strongly believe, however, that it is not. The reason is that Lightning Network is not a part of 
Bitcoin. It is a separate payment system that can use bitcoins as transferable units, while at the 
same time not actually being a part of the Bitcoin protocol, apart from its opening and closing 
points. Technically, each payment channel is a separate two-replica SMR system with specific 
liveness and safety properties. 

For this reason, it simply cannot solve any Bitcoin architecture issues directly. It is the same as 
claiming that fiat cash can solve the scalability issue because anyone can exchange Bitcoins for fiat 
cash, perform any number of transactions he wishes and purchase Bitcoins again in the end. 

We are quite skeptical toward payment channels, and we do not consider this technology as 
beneficial as it is often presented. 

Payment channels feature some technical restrictions that make their implementation very specific. 

• Channels can be opened only between two accounts. 

• Channels’ capacity is limited by the amount of the opening transactions. 

• Channels exist within a predefined amount of time. 

How does this affect the user experience? In most cases, money is transferred one way (from a client 
to a merchant). Situations when back-and-forth transfers are needed are extremely rare and often 
can be resolved by debt-clearance solutions without the direct involvement of the payment system. 
Considering that a payment channel requires at least two transactions to be sent to the blockchain 
(opening and closing) from each party, it only makes sense to open a channel between Alice and 
Bob, when Alice certainly knows that she will need to make more than two coin transfers to Bob in a 
short period of time. 

2. Payment channels network 

To increase the capabilities of the technology, a relaying solution was introduced. 
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Suppose Alice wants to send coins to Bob but does not have a direct open channel to Bob. At the 
same time, Alice has an open channel to Carol, and Carol has an open channel to Bob. Alice can use 
Carol as an intermediary to transfer coins through the existing-channels route. Such a route can also 
be complex and involve multiple relays. 

The routing system can unite all users in a single network and provide fast and secure off-chain coin 
transfers, but, unfortunately, its design features certain limitations, which are the reason we are not 
optimistic about this technology. 

Since, after opening a payment channel, the specified number of coins is blocked in the blockchain 
until the moment the channel is closed, it is impractical to open payment channels just in case. This 
means that if Alice opens a channel with Carol, she pursues one of the following goals: 

• She wants to transfer some coins directly to Carol. In this case, using this payment channel as 
a relay for the coin transfer 𝐴 → 𝐶 → 𝐵 is pointless, since it will reduce the capacity of channel 
𝐴𝐶, thus forcing Alice to open another channel to be able to settle her deal with Carol, when it 
would be easier for Alice just to open a new channel directly with Bob. 

• She predicts that Carol will be willing to become an intermediary for coin transfers to various 
recipients, possibly including Bob or someone who has a channel to Bob. 

From Carol’s point of view, the situation looks quite similar. If she opens a channel with Bob, then 
she pursues one of the following goals: 

• She wants to transfer some coins directly to Bob. In this case, using this payment channel as a 
relay for the coin transfer 𝐴 → 𝐶 → 𝐵 is pointless, since it will reduce the capacity of channel 𝐶𝐵, 
thus forcing Carol to open another channel to be able to settle her deal with Bob. 

• She predicts that someone will be interested in transferring coins to Bob and wishes to 
become a relay for that transfer. 

This shows us that being a relay is not something that any user will be willing to do. Becoming a 
relay only makes sense if the user possesses a significant number of coins in the blockchain, which 
she is ready to block, and she can ensure that enough users will be willing to use her services. 

These obstacles make relaying a purely professional activity and transform a payment channel 
network into something resembling a banking system endowed with the following properties: 

a) Relays take fees for their services. 

For Carol, being a relay requires possessing and blocking the number of coins equal to the 
overall capacity of the channels opened simultaneously to all other relays and/or clients. The 
only reason Carol may wish to bear this burden is to get an economic return. 

A very important condition is whether the channel is opened in a PoW or a PoS blockchain. In 
PoW systems, users cannot earn coins for staking, so hodlers may be initially interested in 
becoming relays. 

PoS is a totally different matter – since being a relay requires the blocking of coins, Carol will be 
willing to become a relay only if she can charge fees comparable to a possible income from 
block production. Otherwise, she will prefer to use the same number of coins as stakes for 
minting. 

At the same time, the route between Alice and Bob may include multiple relays, each of which 
will charge its own fees, thereby possibly making the total fee higher than a fee for a direct on-
chain transaction. 

b) Relays are points of failure. 

A payment-channels network is not a peer network, as most blockchains (including Dynemix) 
are. 



66 

 

Its overlay topology may be roughly described as hybrid star-mesh. Multiple clients are 
connected to a certain central relay, which forms a star topology. Then relays are connected to 
each other through a partially connected mesh network. 

Such topology means that in the case of Carol’s failure all her clients will be fully disconnected 
from the network and their coins will be blocked in the blockchain until the channels’ TTLs 
expire or Carol goes back online. 

Clients cannot simply solve this problem by connecting to multiple relays, since each payment 
channel requires the blocking of coins in the blockchain; therefore, clients will have to block a 
separate share of coins for each connection. 

c) Relays have censorship abilities. 

Though Carol cannot steal coins from Alice or Bob, she has strong censorship abilities, since 
she can refuse to fulfill her part of the deal by her own will, and Alice’s and/or Bob’s coins in the 
channel will be blocked until the channel expires. Due to the limitations of the payment-
channels technology, such actions cannot be penalized. 

In most cases, these opportunities do not pose a serious threat, since such behavior does not 
provide any benefit to Carol. Moreover, she is economically incentivized to behave correctly in 
order to attract more customers to her mediation services. 

Carol may be vulnerable to pressure, however. The more clients Carol has and the more she 
risks losing, the more cooperative she will become. Considering that Carol’s node is a point of 
failure for all her clients, we may conclude that a payment channel network is highly 
vulnerable to censorship. 

These features make the user experience with payment channels drastically different from the first-
layer blockchain. A payment-channel network lacks decentralization, fault tolerance and censorship 
resilience – very important features of blockchain systems. At the same time, most common users 
do not recognize the difference between the first and the second layer and consider Lightning 
Network a part of Bitcoin. 

This is why we do not consider the payment channel technology a good solution to the scalability 
issue. The technology is not bad in itself, but the misrepresentation of its nature confuses 
cryptocurrency users, who for the most part do not have sufficient competence to understand all 
the flaws of the mentioned solution. 

In defense of payment channels, we can say that, for now, they are supposed to be used mostly for 
microtransactions, and it seems to be the best way to use them, since payment channels can 
provide the necessary speed for slow blockchains like Bitcoin. At the same time, the flaws 
mentioned above become less crucial when the stakes are low. 

3. Atomic swaps and cross-chain transactions 

HTLC (the underlying technology that powers payment-channel networks) can be also used for 
atomic cross-chain swaps. An exchange of different cryptocurrencies can be performed directly by 
two parties by opening payment channels in both blockchains and closing them after the parties 
fulfill their obligations or the TTL expires. 

The proposed solutions for atomic swaps via HTLC seem generally reasonable, as they solve the 
problem without intermediaries and thus keep decentralization on the level of the first layer. 

Unlike simple swaps, the problem of cross-chain transactions between arbitrary blockchains 
requires a more complex solution. 

To date, there are several concepts for resolving the matter by involving second-layer intermediaries 
or building a top layer above the blockchains that is controlled by a consensus of validators (layer 0), 
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thus creating a heterogeneous multi-chain (e.g. Polkadot). This should become a decentralized 
solution for cross-chain transactions. 

The problem is that the currently proposed protocols are not as decentralized as we would wish 
them to be. For example, Polkadot uses Delegated Proof of Stake as a consensus model for the top 
layer (Relay Chain). DPoS indeed can be faster than most PoS alternatives, but we are quite skeptical 
about the level of decentralization that can be achieved with such a design. 

Considering that joining such systems requires modification to the blockchain protocol and 
granting of authority to the top-layer validators, we do not find solutions of this kind appropriate for 
Dynemix, and the system will likely not go beyond cross-chain swaps. The final decision will be up to 
the community. 

4. Payment channels in Dynemix 

Taking into account the above, atomic swaps via HTLC seem to be a viable option. Therefore, adding 
the support of HTLC to Dynemix to enable atomic swaps seems an option worth considering. The 
final decision will depend on the attitude of the community. 

As for the payment channels themselves, there is not much use for this technology for Dynemix, 
since our system does not suffer from the scalability issue. Considering that payment channels form 
a separate network with its own rules (followed by the drawbacks mentioned above) and that 
recognizing the payment-channel network from the blockchain layer may be troublesome for most 
users, we would advise avoiding the use of this technology unless it becomes clear that it provides 
some really significant benefits (like the mentioned atomic swaps in the case of their mass adoption 
or the possibility of implementing off-chain smart contracts). 

It is also worth mentioning that a full-scale payment-channel network cannot be formed on top of 
Dynemix for economic reasons. Since Dynemix features free transactions, there are no economic 
prerequisites to become a relay – if a relay charges commission for its mediation services, users will 
prefer sending transactions directly to the blockchain free of charge. At the same time, it makes no 
sense to perform the relay functions in a payment-channel network without receiving a reward, 
since users could engage in minting instead. The situation may change, though, if Dynemix begins 
to support off-chain smart contracts, which are not supported on-chain. 

5. Smart contracts in Dynemix 

As mentioned, implementing virtual machine technology can negatively affect the platform’s 
stability and scalability, as well as degrade certain features that allow Dynemix to be a breakthrough 
payment platform. 

For these reasons, we will not include any smart-contract support in the first version of the system. 

If the system, however, shows a performance reserve after being tested under substantial loads 
(with at least 10 million active users), adding some limited smart-contract support may be 
considered. This should most likely not include Turing-complete code support, but rather specific 
templates with a limited set of variables that can actually benefit the cryptocurrency as a means of 
payment and at the same time not completely turn it into a decentralized virtual machine. 

As mentioned, adding certain types of smart contracts can allow not only the implementing of 
scripted business scenarios, but also the possibility of creating payment channels on top of Dynemix 
and using a variety of off-chain smart contracts with the help of DLC or any other possible 
techniques that can be developed in the future. Of course, such contracts will have limited 
functionality and will not bear the same properties as smart contracts operated on the blockchain 
layer, due to the flaws of second-layer solutions, but nevertheless it is a viable option for 
implementing smart contracts without increasing the load on the blockchain. 

We should note that such a decision would require a hard fork, so the possibility of implementing 
smart contracts will depend on the community’s attitude. 
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VII. Decentralization 
During the development of Dynemix, we paid a lot of attention to the matter of decentralization. 

First-generation blockchain systems based on PoW protocols turned out to be not as decentralized 
as expected. At the same time, more recent projects’ developers tend to trade decentralization for 
speed and scalability. 

We do not support such an approach, and we have put a lot of effort not just into ensuring a 
sufficient level of decentralization but also into making Dynemix one of the most decentralized 
blockchain systems to date. 

Let us explore what has been achieved with the help of our approach. 

1) State transition 

a) Safety and liveness thresholds 

Since Dynemix features sharding and a two-layer consensus, the question of safety and 
liveness thresholds is complicated. 

The system makes progress as long as at least one shard-block at each height gets approved 
and 3

5
 of minters are honest and online. We may intuitively assume that the share of the global 

stake pool that is required to stall the protocol lies between 1

3
 and 2

5
. At the same time, a 

consistent violation of safety would require roughly 2

3
− 𝜀. A more precise assessment can be 

provided after the test period. 

All in all, we may state that, from the point of view of raw numbers, the safety and liveness 
thresholds are close to most asynchronous BFT protocols. 

We have applied a set of measures, however, that ensure the growth of the global stake pool 
size, including 

• setting a moderate minimal stake boundary; 

• securing low hardware and bandwidth requirements; 

• allowing funds to be unbonded quickly; 

• targeting inflation; 

• adopting a model of weak responsibility. 

With the adoption of these measures, the share of resources needed to affect the state 
transition in relation to the market cap of the platform is expected to be significantly higher 
than in many other blockchain systems. 

b) Participants 

Resisting professionalization of the state transition processing was one of the key goals of our 
project. Although we needed to provide sufficient speed and scalability, at the same time we 
managed to set a low participation threshold. 

The involvement of ordinary users is ensured by providing the opportunity to participate at will 
without the need to hold uninterrupted availability (the model of weak responsibility) and 
having a low minimal stake threshold. Furthermore, the entire economic model of Dynemix is 
designed to favor regular users instead of minor elite groups. 
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c) Initial coin distribution 

Given our devotion to decentralization, we do not plan to distribute the initial coin volume in a 
manner that can allow the concentration of a large share among a small group. The bulk of 
coins will be distributed via a prolonged public sale at a market price, which seems the 
optimal way to assure the widest distribution. 

d) Issuance model 

Even if certain entities manage to acquire a large share of coins at the initial stage, it will not 
help them keep control of the system later on. Unlike most PoS designs, which make the rich 
get richer (because the largest stakeholders obtain most of the issued coins), Dynemix 
features a unique issuance model that disperses many of the issued dynes among a large 
number of participants (helicopter money), thus constantly reducing the relative size of the 
initially acquired shares and preventing the concentration of power. 

2) Hardware and bandwidth requirements (entry threshold) 

During the development process, we devoted a lot of attention to optimization. Since we intended 
to create a truly decentralized system that was at the same time capable of processing a high 
transaction flow, we had to implement a number of unique solutions. 

Given the implementation of quilt technology, Dynemix features two types of minting nodes: a full 
node and a master-node. Although master-nodes provide a number of benefits to the system, they 
cannot directly affect state transition, which is why decentralization is considered at the full-node 
layer. 

Full nodes store only the current state and information about recent state changes. This does not 
require much storage space even under an intense load. A very important achievement is 
maintaining the storage and traffic overhead dependent only on the current system load, regardless 
of the time that has passed since launch (i.e. the growth of the blockchain does not affect the 
overhead). Full nodes are not obliged to store the entire blockchain and can securely synchronize 
with the system any moment without the need to download a complete set of missed blocks. 

Sharding helps optimize the validation process on both the blockchain and quilt layers, and, 
according to our estimates, a mid-class home PC will be capable of participating even after the 
system significantly scales up. 

Master-nodes store the complete blockchain with all transactions included. Running a master-node 
requires much more resources, but this mode is expected to be employed for professional purposes 
by services such as block explorers, exchanges etc. Though they store a lot of useful data, master-
nodes are not crucial, and, even in case of their complete shutdown, the robustness of the system 
will not be threatened (although the additional line of defense will become unavailable). 

Considering that full nodes are the main type of nodes that ensure system availability and resilience, 
we can state that Dynemix provides an exceptional level of decentralization. 

3) Development 

Our system features no obstacles to launching forks. Major stakeholders will not be able to 
compromise undesired forks; therefore, from this point of view, Dynemix’s decentralization level is 
very high and equal to that of other open PoS systems. 

4) Overall level 

We can conclude that we managed to greatly increase the decentralization of every component, 
thus creating – without any exaggeration – one of the most decentralized platforms to date. 
Moreover, we have put a lot of effort into ensuring that the achieved parameters will not degrade as 
the system scales up with popularity. 


