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Economics of Dynemix 

 
Dynemix is a blockchain platform of the next generation designed to 
become the first worldwide-adopted cryptocurrency capable of 
competing with conventional consumer-level payment infrastructure 
on equal footing and substituting it entirely eventually. 

The economic model of Dynemix features a breakthrough design of 
a decentralized algorithmic central bank capable of simultaneously 
balancing the value of native coins against fiat currencies and directly 
maintaining a targeted interest rate, which allows to indirectly target 
an optimal level of inflation and output growth. 

 

The following paper contains an informal description of the project. 
The provided specifications are not final and are subject to 
amendments, if necessary, up to the mainnet launch. Any updates to 
this paper can be made without prior notice. 

The following paper does not contain any coin purchase offerings or 
any other information on the initial coin distribution. 
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I. Introduction 
In 2009, the first decentralized cryptocurrency, Bitcoin, was introduced. 

Bitcoin can be considered a response to the modern monetary policy, which tends to favor minor 
elite groups. Although the proclaimed intentions of banking systems led by central banks are 
focused on stabilizing the economy, facilitating continuous growth, and helping overcome crises, it 
often happens that gains are consumed by elites, and losses are shared among the middle class. E.g. 
according to the Bank of England, its own QE measures during 2008 recession increased the wealth 
of the richest 5% of households by 40%. 

Bitcoin introduced a groundbreaking concept of an algorithmically controlled currency with a fixed 
hardcoded monetary policy that was supposed to prevent elite groups from gaining the ability to 
control the coin supply. Satoshi’s invention could have changed the entire financial framework, but 
unfortunately, Bitcoin featured too many shortcomings that didn’t allow it to reach the stated goal. 
Even though it was introduced by its creator as a decentralized payment system (literally “a peer-to-
peer electronic cash system”), Bitcoin did not turn out to meet that definition and became a 
speculative asset or an inflation hedging tool instead. 

If we leave technical issues aside and focus on the economic model of Bitcoin, we can state that 
there are two main issues in Bitcoin’s design that impede the ability of the platform to perform the 
money function: 

• Scarce supply and a primitive issuance model. 

• An inappropriate model of the coin distribution. 

It is impossible to solve these issues without changing the fundamentals of Bitcoin, which is why we 
need a new system that can finally embody the initial ideas of Satoshi and become a true 
cryptocurrency. 

To create a true decentralized cryptocurrency, we need to solve the following issues: 

a) Technical. The platform should be capable of providing the level of user experience at least 
not inferior to conventional fiat payment infrastructure. As far as this paper is devoted to the 
economic model, we will only address technical solutions that are required to implement the 
described features. 

Inserts describing technical solutions will be marked with green background. If you are not 
interested in technical details, you can skip those parts. 

b) Economic. We need to solve the issues of Bitcoin described above and create a currency that 
will be perceived as a medium of exchange instead of a value-storing asset. 

c) Political. The system should stay substantially decentralized, which means that we cannot use 
economic models that heavily rely on external sources and/or governance. We can admit that 
the model will require corrections, which can be applied via forks, but we assume that this 
shouldn’t grow to the extent of systemic manual control. 

In the following paper, we present an economic model of cryptocurrency Dynemix, which is 
capable of conducting a monetary policy in a similar manner as the conventional policies of 
central banks are executed, at the same time being completely decentralized and independent, 
thus becoming the first true cryptocurrency. 
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II. Simple Model 

1. Naïve Implementation 

The scarcity of the money supply eliminates incentives for economic development. If the economy 
grows much faster than the money supply, it leads to deflation, which in turn gives a start to 
deflationary cycles that create permanent instability. 

If we want to create an asset that will be used as a medium of exchange, this asset should be 
perceived as something spendable. This can be achieved by raising the expectations of perpetual 
devaluation, and an obvious solution is to apply a high issuance rate. 

According to the naïve concept, we need to find the optimal ratio of the attractiveness of our coin to 
consumers and its unattractiveness to speculators. Simply put, if the issuance rate is set too low, it 
may turn the coins into an investment and inflation-hedging asset like Bitcoin; if the rate is too high, 
we may inhibit the growth of the platform for a rapidly depreciating asset becomes unattractive for 
any purpose. This idea can be interpreted as a sort of Friedman's 𝑘-percent rule. 

At the early stage, the emission rate could be set higher since the platform will more likely 
experience an influx of investors expecting an increase in value. In time, as the potential investment 
attractiveness drops, the issuance rate should be decreased and stabilized at some point providing 
the level of the supply inflation optimal for the further economic growth. 

Suppose we apply 10% annual emission during the first year after the mainnet launch with a 
gradual reduction of the monetary issuance to the level of 5% within the following five years. 

This solution engenders two issues: 

• We cannot reliably estimate the optimal issuance rate. We are unable to forecast even an 
approximate course of the economic development, which is why any chosen rate is just a shot 
in the dark. 

• This approach can work with a Proof-of-Work (PoW) system, but being applied to a Proof-of-
Stake (PoS) system it can produce the opposite effect. 

The problem is that PoW concept is obsolete and cannot provide technical features that allow the 
platform to compete with conventional centralized payments systems, which is why we need to use 
a PoS model. 

Suppose we have a typical PoS blockchain, in which coin holders can deposit coins in their 
possession to participate in block production (minting). We also have a fair random sampling 
algorithm that provides a chance to create a block proportional to the size of the deposit 𝑆𝑛 
expressed as a share of the total coin supply, and an issuance model with the amount of reward for 
each block that maintains a constant annual issuance rate 𝑘𝑖 . In our model, we will neglect minimal 
stake requirements as well as other obstacles for the participation in minting (hardware, bandwidth 
etc.) and assume that each coin holder can participate on equal terms regardless of the number of 
coins in his possession. 

Suppose we have an array of 𝑛 stakeholders each of which placed a stake of an arbitrary value. The 
stake pool 𝑆 will consist of the sum of all currently placed stakes 

𝑆 = ∑ 𝑆𝑖

𝑛

𝑖=1

 

Alternatively, we can define 𝑆 as a share of the total supply of coins being staked at a given moment. 

In the long run, each stakeholder will receive a number of coins corresponding to the size of his 
stake 𝑆𝑛 , the size of the stake pool 𝑆 and the issuance rate of the blockchain 𝑘𝑖 . Typically, 
stakeholders are also allowed to restake after a certain ∆𝑡, and they can compound interest by 
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adding the newly acquired coins to 𝑆𝑛 . Under such conditions, the annual nominal income of 
stakeholders can be expressed as 

𝑆𝑛𝑘𝑖

𝑆
< nominal income <

𝑆𝑛(𝑒𝑘𝑖 − 1)

𝑆
 

We can also compound the issuance rate by recalculating each subsequent 𝑘𝑖(𝐵𝑛) in the row {𝐵𝑛}𝑛∈ℕ 
according to 𝑘𝑖(𝐵𝑛−1) to offset additional income gained by restaking, but since potential deviations 
are low enough to be negligible for our purpose in any case, we will approximate the result to 

𝑆𝑛𝑘𝑖

𝑆
 

The equation above, however, doesn’t account for the growth of the coin supply that occurred via 𝑘𝑖 . 

Assume that coins of our blockchain hold stable value. Inflation 𝑖 can then be expressed through 
inflation of the coin supply or, in other words, the issuance rate (𝑖 = 𝑘𝑖). Under such an assumption, 
we can adapt the Fischer equation to calculate the real income for stakeholders in the following 
way: 

real income =
𝑆𝑛𝑘𝑖 𝑆⁄ + 𝑆𝑛

1 + 𝑘𝑖

− 𝑆𝑛 

We can derive two important observations from this equation: 

a) Under 𝑆 = 1, 𝑟𝑒𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 = 0 regardless of 𝑘𝑖. If all coins in the system are staked, minters gain 
no real income, and the relative share of the total supply in their possession stays static at any 
issuance rate we set. The assumption of all coins being staked, however, is unrealistic and 
meaningless. Coins are supposed to be transacted, which is why only a fraction will be 
deposited simultaneously. 

b) Under 𝑆 < 1, 𝑟𝑒𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 > 0 and is positively correlated with 𝑘𝑖 and inversely with 𝑆. The less 
the stake pool is, and the higher issuance rate we set, the more real income the stakeholders 
start to receive, which means that by adopting the model described above we create 
incentives for hoarding instead of spending, thus achieving a result opposite to our intentions. 

To make the model work, we need to adjust the setup and create an inverse relation between the 
issuance rate and real income. At this point, we introduce our contribution to the crypto economics: 
helicopter coins. 

2. Helicopter Coins 

In Bitcoin and other PoW systems, newly issued coins are granted to miners to create economic 
incentives for keeping the system secure. In PoS implementations, issued coins are distributed in a 
similar way among stakeholders (minters). As shown above, this approach allows to increase the 
relative share in possession and thereby makes the rich richer and the poor poorer. In fact, the 
economic models of current PoS implementations don’t differ much from the conventional elitist 
policy of monetary authorities and have little to do with the initial ideas behind Bitcoin and 
decentralized currencies in general. 

However, what if we start distributing issued coins among all users? The concept named 
helicopter money was proposed by Milton Friedman. The current understanding of the concept 
implies the transfer of newly “printed” money directly to individuals bypassing commercial banks (or 
applying variations, such as tax cuts, which can produce a similar effect) as an alternative to 
quantitative easing and other expansionary measures. 

Although there are no banks that create credit money within blockchains, minters (miners) can be 
considered similar oligopolistic actors who have strong influence on the distribution of wealth. 
Bypassing minters and giving coins to users significantly alters the entire economic model. 
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Permissionless blockchains are vulnerable to Sybil attacks, which is why a non-trivial technical 
solution is required to implement helicopter coins. We cannot simply grant coins to all IDs 
(accounts, keys etc.), because users can create multiple representations to gain more coins (unless 
the setting is permissioned). 

In Dynemix, the solution for distributing helicopter coins is based on the capabilities of the 
Liberdyne messenger. The system features a transport protocol for offline message delivery that 
involves a band of users as delivery relays. One of the key properties of the protocol is extremely low 
overhead, which allows for participation via mobile devices. As the protocol will be activated for all 
Liberdyne users, it will serve as a distribution channel for helicopter dynes. You can read more 
information on the solution in the Dynemix and Liberdyne whitepapers. 

Now let us see what happens if we introduce helicopter coins into the model described above. 

Assume we set a minters’ share 𝑘𝑠. For example, we set 𝑘𝑠 = 0.2, which means that out of all issued 
coins only 20% go to minters and 80% are dropped from the helicopter. 

For simplicity, let us transition to the simplified version of the Fischer equation. Also, we will switch 
from the notion of income to the notion of interest and express all values of the variables in %. With 
the introduction of 𝑘𝑠, the equation of real interest 𝑟 will look as follows: 

𝑟 =
𝑘𝑠𝑘𝑖

𝑆
− 𝑘𝑖 

We can derive three important observations from this equation: 

• 𝑟 < 0|𝑘𝑠 < 𝑆. If the stake pool exceeds the minters’ share, minters start losing value in their 
possession, which makes hoarding not profitable. 

• 𝑟 = 0|𝑘𝑠 = 𝑆. When the stake pool is equal to the minters’ share, real income is zero, and 
minters maintain value in their possession. 

• 𝑟 > 0|𝑘𝑠 > 𝑆. If the stake pool is below the minters’ share, minters start gaining profit. 

Suppose we have two blockchains with 𝑘𝑖 = 1 in one, 𝑘𝑖 = 10 in the other, and 𝑘𝑠 = 20 in both. The 
interest rate chart will look as follows: 

 

Axis X shows the volume of the global stake pool. Axis Y shows the real interest rate of minting at 
different stake pool sizes. The red and blue lines show real interest at 𝑘𝑖 = 1 and 𝑘𝑖 = 10 respectively. 

We can see that the more we increase the issuance rate, the steeper the curve of the interest rate to 
the right of the neutral point 𝑆 = 𝑘𝑠 becomes. If we target a stake pool size above the currently set 
minters’ share, we can use the issuance rate to change the rate of interest for minters, thus making 
hoarding less profitable. 
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With the introduction of helicopter coins, we now have a model that can solve the issue of 
hoarding in PoS blockchains. By inflating the supply, we make long-term holding unprofitable, 
which escalates the turnover of coins and helps to stabilize the economy. In such a model, coins 
can become an actual medium of exchange instead of a speculative asset. At the same time, by 
setting a minters’ share we can assure any required size of the stake pool for security. 

3. From Hoarding to General Price Volatility 

The described model still leaves plenty of issues unresolved. To start with, our simple model 
performs as a standalone ecosystem, and we didn’t account its relation to external assets. The 
assumption of a stable real value of coins is unrealistic, and practice shows that blockchains are 
subject to massive value fluctuations. 

Furthermore, even if we manage to solve the hoarding issue, there is still a problem of potential 
devaluation: we can expect drops in demand for our coins, which in worst cases can start a 
hyperinflation loop. 

The stated problems bring us to the concept of a stablecoin. The issue of volatility in crypto 
economies has been addressed almost since the appearance of Bitcoin, and a number of solutions 
has been proposed to date. 

The simplest solutions are collateralized stablecoins, which are powered by third-party’s liabilities of 
backing coins by allegedly stable exogenous assets (such as a fiat currency, SDR, a commodity, etc.) 

More sophisticated solutions use algorithmic schemes that allow the exchange rate to be 
determined by the market, but at the same time the supply is constantly adjusted to counter shifts 
in demand and keep the exchange rate stable. Known algorithmic solutions share three main 
fundamental flaws: 

a) They are not fully decentralized. Seigniorage-style systems still require a “reserve bank” that 
stores a sufficient amount of the backing asset to counter price drops (as an alternative, it can 
rely on third parties performing the same functions). Managing the reserves requires a 
governance system, which, together with the price determination issue, inevitably brings us to 
a semi-centralized setting and/or significant dependence on third parties. It also brings 
uncertainty about the legal status of assets used in such models and about possible actions of 
financial regulators for said assets will be likely considered securities. 

b) They are not long-term robust. The main economic driver of the algorithms is a short-term 
arbitrage opportunity. If the peg breaks, there are no long-term sustainability mechanisms, 
which can lead to a “bank run” of economic agents and a quick collapse of the system. 

c) They are not independent in the economic sense. As a rule, stable coins derive their 
proclaimed stability from allegedly stable off-chain assets. In other words, such coins are only 
as stable, as assets that they are pegged to are. This concept may be acceptable if we only 
intend to build a sort of an auxiliary financial asset, but as we are going to create a new 
generation of money capable of substituting the entire fiat financial infrastructure, such an 
approach does not withstand criticism. 

To reach our proclaimed goals, we need to create not simply a stablecoin but a completely 
independent model of economy that is capable to maintain stable prices intrinsically, regardless of 
any “foreign currencies”. 

Given our intentions to create a fully decentralized cryptocurrency that can substitute traditional 
money, we made every effort to solve the stated problems and herein we present the first model 
of an independent algorithmic economy capable of taming volatility and sustaining stable 
economic growth that relies neither on exogenous sources or assets nor on governance. 

In the following section we will describe the algorithm that works as a stablecoin, i.e. an asset that 
maintains its exchange rate against exogenous currencies, after which we will extend the model to 
a fully-fledged decentralized central bank. 
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III. Complete Model of Stablecoin 

1. Framework 

The functioning of our model is based on certain premises that we need to outline before we 
describe the algorithm. Some of them require specific technical features, which is why the 
algorithm cannot be implemented into any arbitrary PoS blockchain. 

a) There is no difference between staking coins and holding them in the free form except for 
the opportunity cost. We assume that the majority of users will prefer holding coins that 
exceed their short-term transactional demand as stakes and participate in minting because 
minting always brings nominal interest regardless of the state of the economy at any given 
time and hence is more profitable than keeping coins in the free form (unstaked). Locking and 
unlocking of the coins should be fast and free, and participation in the block production 
should be affordable for the vast majority of users. Essentially, in our economy saving means 
staking. 

This assumption makes the volume of the stake pool highly elastic to market conditions, 
which allows us to use it as the main indicator of the current state of the economy at any given 
time, thus circumventing the involvement of exogenous oracles to retrieve data on prices, 
exchange rates or other indicators. 

Our model assumes that coins deposited as stakes are equally (or nearly-equally) liquid to 
unstaked (free) coins. This doesn’t seem realistic for most current PoS implementations. PoS 
concept suffers from a problem called nothing-at-stake. A possible solution to the named 
problem implies locking the deposited stakes for a long period (possibly reaching months), 
which turns staked coins into a long-term maturity asset. Although such a design is currently 
used by many PoS blockchains, it doesn’t fit our economic model. 

In Dynemix, we use a different approach to the nothing-at-stake problem, and deposited coins 
become spendable within approximately 30 seconds after an unstake transaction is 
processed. Although the liquidity of deposits is still formally lower than that of free coins, the 
difference is so minuscule that it can be neglected. For that reason, we can claim that in 
Dynemix liquidity preference doesn’t influence the choice between holding free coins and 
depositing them as stakes. As we made minting extremely user-friendly via the Liberdyne 
messenger and secured low hardware requirements, the design of Dynemix fits the described 
model and allows for its full-scale implementation. 

b) We refine the notion of the real interest rate. Previously, we assumed an autarkic ecosystem 
where the real interest rate was the nominal interest rate adjusted by supply inflation. Now 
that we switched to a more realistic setting with volatile prices, a real interest rate is the 
nominal interest rate adjusted to price inflation, which is a common comprehension of the 
notion at hand. Henceforth, the equation of the real interest rate looks as follows: 

𝑟 =
𝑘𝑠𝑘𝑖

𝑆
− 𝑖 

c) Users behave rationally and tend to choose a more profitable asset to hold. The behavior of 
most participants is driven by the opportunity cost, risk assessment and expectations. We 
assume that in relation to the coins in possession that exceed the transactional demand, out 
of staking coins and keeping them in the free form the user will prefer the first option, whereas 
out of staking coins and exchanging them into other assets the user will consider the 
difference in the provided interest and the risk of losing liquidity along with other risks that 
emerge from the decision of transitioning value from a decentralized environment into a 
centralized one. In short, our approach is similar to the Tobin’s portfolio model. 

d) The substantial part of the economy is formed by a real market with sticky prices. The 
model can inherently adapt to trends but provide a worse reaction to shocks. For example, the 
model will not be efficient in the current economy of Bitcoin as the demand for BTC is formed 
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mostly by the speculative motive, which can quickly shift the demand within a very wide band. 
The predominance of the transactional motive, on the other hand, allows to take the 
advantage of price stickiness along with time lags in the transmission scheme and hence 
effectively manage the expectations of economic agents. 

2. Default Equilibrium 

First, we need to define the default state of our economy and the targeted conditions the model will 
strive to maintain. 

1) Stake pool 

We need the stake pool to be as high as possible to provide more security. We assume that in a PoS 
system, the larger the global stake pool is, the more resources are required for a successful attack. 

At the same time, the stake pool produces an effect similar to excessive bank reserves in a 
conventional economy: while being deposited, coins are withdrawn from the markets, and the 
velocity of circulation is reduced. The larger share we allow to be deposited, the larger fluctuations in 
velocity of circulation can occur as the stake pool shifts. 

Given the statements above, suppose the default stake pool target is 𝑆∗ = 20 for it provides sufficient 
security and produces a lesser effect on velocity. This value, however, may be not final and can be 
subjected to changes during further research. 

2) Issuance rate 

The issuance rate should be set to maintain a targeted inflation rate. If we target inflation 𝑖∗ = 2, 
assuming the demand for money is static we need to apply 𝑘𝑖 = 2. The demand in our stablecoin 
model is not static, however, which is why we need to continuously adjust the issuance rate 
according to the shifts in demand. 

There is no need to set the upper boundary, which makes expansionary potential practically 
unlimited, but the lower boundary is derived from the PoS security model, which requires economic 
incentives for minters to participate in block creation. We can claim that 𝑘𝑖 > 0 at least. 

Although we consider staked and unstaked coins equally liquid, there is still a sufficiently low value 
that makes the yield provided by stakes negligible for most participants. In terms of this section, we 
will consider 𝑘𝑖 = 2 a lower boundary for illustrative purposes. 

3) Natural savings 

At this stage, we apply the Keynesian approach to the demand for money. We assume that most of 
the supply is used for transactions while a certain fraction is saved by participants. These savings 
consist of the natural fraction, which is formed by the long-term transactional motive (coins that are 
meant to be spent but with some significant delay) and the precautionary motive (coins that are 
saved for possible unexpected expenditures), and of the speculative fraction, which represents the 
opportunity to gain interest. 

The natural fraction should remain approximately the same size, whereas the speculative fraction 
can fluctuate within a very wide band depending on the current economic setup and the 
expectations of future trends. 

To effectively counter demand imbalances, we should estimate the natural savings rate. As in our 
model we assume deposited coins to be almost equally liquid to free coins, most of the natural 
savings will be staked anyway, regardless of the incentives at the time, which is why after we try to 
lower the targeted stake pool size below the natural savings boundary, the stake pool can become 
inelastic to market conditions, and our monetary policy will lose its effectiveness. 
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It is hard to predict the natural savings rate at the current stage, but we can roughly estimate that it 
will likely not exceed 10% of the supply. A more precise assessment can be made via empirical 
studies. 

If we assume the natural savings to reach approximately 10%, can we then conclude that the stake 
pool normally should also be of that size? As we mentioned, we expect the speculative motive to 
have a significant influence on the total savings rate, and the actual size of the stake pool will 
depend on the real interest that deposited coins provide. 

4) Natural interest 

Suppose the economy remains stable for a certain period, prices hold at the same level and are not 
expected to shift. All other variables being static, if we apply 𝑘𝑖 = 2, this should cause equal price 
inflation in the long run, and 𝔼(𝑟) curve under 𝑘𝑠 = 20 will look like this: 

 

We can see that under 𝑆 = 10 minting provides 𝑟 = 2 (the black dashed lines). 

If the current short-term real interest provided by exogenous assets 𝑟𝑒  is also equal to 2%, it is not 
profitable to deposit coins further as the growth of 𝑆 pushes down 𝑟, which incentivizes to convert 
savings into more profitable assets. If 𝑟𝑒  drops to 1%, however, our coins become more attractive and 
𝑆 will grow to 𝑆 = 13.3, at which 𝑟 = 1 (red dashed lines). We can state that there is always a point of 
equilibrium to which the stake pool size tends at any given time. This point is defined exogenously 
by the interest rates of alternative assets combined with the exchange rate shifts and endogenously 
by the economic setup of our coins. 

This leads to the conclusion that if we want to target a healthy size of the stake pool (say 𝑆∗ = 20), we 
also need to target a healthy interest rate, which brings us to the notion of the natural interest 𝑟∗. 

The natural interest rate is a Wicksellian concept and can be defined as a short-term real interest 
rate that provides for the output growing at its potential rate. Since it cannot be observed directly, 
the question of measuring the exact rate is debatable. Inasmuch as this paper doesn’t purport to 
establish the final implementation of the model but rather to describe the basic principles, let us 
leave this question aside and pick a value from a well-studied conventional policy rule. Suppose the 
long-term 𝑟∗ = 2 as suggested by the Taylor rule. Following the same logic, we can also set a 
targeted inflation rate 𝑖∗ = 2. 

5) Potential output 

Now that we have established a desired 𝑖∗ and 𝑟∗, the only thing we lack is the rate of expected 
potential economic growth 𝛥𝑌∗. The exact rate is debatable, but suppose we agreed on 𝛥𝑌∗ = 3 as 
proposed by the McCallum rule. 
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6) Equilibrium 

All established variables hold fairly stable in the long run, which makes them consistent with our 
decentralized approach: we do not need to constantly adjust them but instead can preset values 
that will be relevant at least for the next 5-10 years, hence circumventing the need of a centralized 
governance. 

Suppose we target the stake pool to 𝑆∗ = 20 under the default conditions. To accomplish this and 
secure the suggested rates of interest, inflation and economic growth, we need to set 𝑘𝑠 = 16. This 
finally brings us to the complete setting of the optimal initial equilibruim: 

Under the issuance rate of 5% and the minters’ share of 16%, given that the economy grows at 3% 
annually, the real interest rate is 2%, inflation is 2% and the stake pool is 20%. 

This is how the interest curve will look under the described optimal conditions: 

 

Unfortunately, the optimal state is not a privilege we can enjoy for long, and an imbalance between 
the demand and the supply will emerge forcing the algorithm to conduct either expansionary or 
contractionary monetary policy. 

3. Expansionary Policy 

Suppose the Central Bank (CB) intends to stimulate the demand and drops the exogenous short-
term real interest rate 𝑟𝑒 to 1%. Since our stake pool is currently 𝑆 = 20, which provides 𝑟 = 2, this 
makes our coins more attractive than alternative assets nominated in the competing currency, and 
the speculative demand grows pushing the point of equilibrium to the right on the curve: 
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The black dashed lines show the initial equilibrium (𝑟 = 2; 𝑆 = 20). The red dashed lines show the 
new equilibrium, which is now reached at 𝑟 = 1; 𝑆 = 26.6. 

The system detects a positive shift in 𝑆 (as we know, 𝑆 can be observed on-chain at any time) and 
assumes the demand is growing. The algorithm starts increasing 𝑘𝑖 until a new equilibrium is 
reached at 𝑆 = 20. The exact rate depends on how the economy reacts to the monetary expansion. 

For the purpose of this section, assume static 𝛥𝑌: regardless of the actions of the algorithm, 𝛥𝑌 = 3. 
Then we can assume that any change in the issuance rate will shift the expectations of inflation 𝔼(𝑖)  
by the equal margin. Under such conditions, a new equilibrium can be found at 𝑘𝑖 = 10. 𝑟 curve will 
look as follows: 

 

On the curve above, 20% stake pool provides 8% nominal interest, and, given 10% issuance rate and 
3% economic growth, expected inflation reaches 7%, which secures 1% real interest for 
stakeholders. 

One can notice that a jump from 𝑖1 = 2 to 𝑖2 = 7 seems excessive for a scenario in which the real 
interest rate drops only by 1%. This observation leads us to the next issue: a faster devaluating 
currency becomes less attractive. 

Suppose the exogenous inflation level 𝑖𝑒2 = 4. In such a case, our currency with 𝑖2 = 7, other factors 
being equal, becomes less attractive to hold, which shifts the demand in favor of the alternative 
currency. The disproportion in demand affects the exchange rate making our coins devaluate 
against the fiat currency. In this case, the exchange rate channel of the monetary policy activates. 
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If we assume both currencies being interchangeable, under the assumption of perfect capital 
mobility, the exchange rate can directly affect preferences: more nominal interest will be demanded 
from a devaluating currency to be preferred for the speculative purpose, and hence an equilibrium 
will be actually found at a lower issuance rate, somewhere in the band 5 < 𝑘𝑖2 < 10. Conversely, if the 
alternative currency faces faster devaluation, it can push 𝑘𝑖2 > 10. 

The algorithm also response in a similar way to the pressure that comes directly from the exchange 
rate channel. If the exchange rate shifts in favor of our currency for the reasons irrelevant to the 
macroeconomic setup, this makes our coins preferable to hold even under 𝑖 < 𝑖𝑒 , which attracts 
more stakeholders and pushes the stake pool up. The algorithm escalates expansion, which causes 
a downward pressure on the exchange rate until an equilibrium is reached at 𝑆∗. 

In any case, under the assumption of interest rate parity, an equilibrium will be found, and the 
algorithm will be capable to adjust the supply to the growing demand and balance the economy 
against alternative assets to keep the exchange rate relatively stable. 

4. Contractionary Policy 

Suppose the CB intends to cool down the economy and raises the exogenous short-term real 
interest rate 𝑟𝑒 to 3%. Since our stake pool is currently 𝑆 = 20, which, under the initial economic 
setup, provides 𝑟 = 2 for stakeholders, this makes our coins less attractive than alternative assets 
nominated in the competing currency, and the speculative demand drops pushing the point of 
equilibrium to the left on the curve: 

 

The black dashed lines show the initial equilibrium (𝑟 = 2 at 𝑆 = 20). The red dashed lines show the 
new equilibrium, which is now reached at 𝑟 = 2 at 𝑆 = 16. 

The system detects a negative shift in 𝑆 and assumes the demand is falling, therefore it needs to 
adjust the supply to the falling demand. 

1) Decreasing issuance rate 

Suppose 𝛥𝑌 stays static. If we target 𝑟 = 3 under such conditions, the model fails finding an 
appropriate 𝑘𝑖 to return to 𝑆∗. The reason is that we set 𝑘𝑠 = 16 previously, which means that it’s 
impossible to provide a real interest equal to the rate of economic growth under 𝑆 > 16. 

In such a case, the system will decrease 𝑘𝑖 to the lower boundary (which we previously set to 2%): 
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The blue line shows the 𝑟1 curve. The green line shows the 𝑟2 curve at 𝑘𝑖 = 2. The red dashed lines 
show an equilibrium at 𝑆 = 16 and 𝑟 = 3. The green dashed lines show an equilibrium at 𝑆 = 20 and 
𝑟 = 2.6. 

We can see that even after 𝑘𝑖 drops to the lower boundary, 𝑟 = 3 is still acquired at 𝑆 = 16. Under the 
assumed conditions (𝛥𝑌 = 3), our current version of the algorithm can counter the increase of the 
interest rate only up to 𝑟 = 2.6 (green dashed lines on the chart). 

According to the equation of exchange, other variables being static, with 𝑘𝑖 = 2 and 𝛥𝑌 = 3, our 
model should provide 𝑖 = −1% in the long run. If the CB manages to increase 𝑟𝑒 , at the same time 
keeping 𝑖𝑒 ≥ 0, our deflating currency becomes more attractive, which will result in a positive shift in 
the exchange rate against the competing currency. Under such conditions and under the 
assumption of interest rate parity, it can become possible to find an equilibrium by adjusting only 𝑘𝑖 
but suppose that 𝑖𝑒 = 𝑖 = −1. 

2) Increasing minters’ share. 

Suppose the algorithm set 𝑘𝑖 = 2, but the stake pool is still below 20%. We cannot go below the 
lower boundary of 𝑘𝑖 for it can jeopardize the security model of the blockchain, and hence we need 
to use other tools. 

As we remember, the equation of 𝑟 in our system contains two arbitrarily adjustable variables. So far, 
we used only 𝑘𝑖 , but since it no longer suffices for our goals, we should turn our attention to 𝑘𝑠. 
Earlier, we set 𝑘𝑠 = 16 and haven’t been touching that setting ever since, but now we need to adjust 
it to create a proper contractionary algorithm. 

First, we need to set the boundaries that we can work within. 

a) Lower boundary. 𝑘𝑠 = 16 allows to target 𝑆∗ = 20 under normal conditions, which were 
described earlier. If we decrease it while keeping 𝑘𝑖 intact, this will decrease 𝑟, and 𝑆 will shrink 
to compensate for that effect, hence forcing us to set a lower 𝑆∗. 

The size of 𝑆 directly determines the security level of the blockchain, which is why keeping it 
reasonably high is one of the top priorities. For that reason, we assume that we shouldn’t set 𝑘𝑠 
that targets 𝑆∗ < 20. We should also keep in mind the issue of the natural savings rate and 
keep 𝑆 sufficiently above that rate. 

b) Upper boundary. Theoretically we can go up to 𝑘𝑠 = 100, but that depends on the particular 
implementation of helicopter coins. Since permissionless blockchains are vulnerable to Sybil 
attacks, a Sybil-proof solution is required, which in most cases rely on certain resources being 
spent or put at stake. Under such conditions, we should keep a sufficient level of economic 
incentives for resources to be shared, hence a minimal helicopter share should be set. 
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In Dynemix, we use helicopter coins as a reward for delivering messages to offline users. This 
activity consumes only a tiny amount of resources, which is why we do not need much of 
incentives. We can assume that 5% share should suffice and set the upper boundary 𝑘𝑠 = 95 for 
now. 

Now let us see how adjusting 𝑘𝑠 affects our economic setup. As we remember, our initial setting 
changed to the following: 𝑘𝑖 = 2, 𝛥𝑌 = 3 and 𝑖 =  −1. 

 

The blue line shows 𝑟2 curve from the previous chart at 𝑘𝑖 = 2 and 𝑘𝑠 = 16. The green line shows 𝑟3 
curve at 𝑘𝑖 = 2 and 𝑘𝑠 = 20. The green dashed lines show an equilibrium at 𝑆 = 20 and 𝑟 = 3. 

After we set 𝑘𝑠 = 20, the equilibrium at 𝑟 = 3 shifted to 𝑆 = 20, which was exactly what we wanted, 
but does it help us with our goal of balancing the economy? To answer this question, let’s take a 
look at how the contractionary policy is executed by CBs in conventional economies. 

When a CB raises 𝑟𝑒 , the effect of that transitions to other market interest rates, which raise 
accordingly. As borrowing becomes more expensive, individuals start cutting consumption while 
business cuts investments in the expansion of production and research. This causes a drop in the 
aggregate demand and employment, which further contributes to a decrease in the demand. 

With fractional reserve banking, a large portion of 𝑀2 money supply consists of credit money. While 
less loans start being issued under higher interest rates, and previously issued loans continue being 
repaid, the volume of credit money circulating in the economy shrinks, thus reducing the overall 
money supply. 

We can state two main effects that are caused by the contractionary policy: 

• The money supply shrinks taming inflation. 

• The aggregate demand drops cooling down the output. 

As we consider our currency an ancillary financial asset in this section, we will leave the issue of the 
aggregate demand aside for now. The effect on the money supply is what currently interests us 
most. If we look back at our model, we can see that adjusting 𝑘𝑠 doesn’t allow us to reach the said 
effect: when we increase 𝑘𝑠, 𝑘𝑖 stays intact, and the money supply still inflates, whereas the 
redistribution of newly created coins between regular users and minters caused by our measures 
produces no effect on the overall money supply. 

This conclusion shows us that our algorithm still lacks an efficient tool to conduct a proper 
contractionary policy and we need to apply further complications. 



16 

 

3) Reducing velocity of circulation 

Since we don’t have a fractional reserve system within our blockchain, and hence no credit money is 
issued and repaid, no control of the supply via 𝑟 is available for us. We cannot use any procedures 
resembling open market operations to adjust the available monetary base either (as is done by CBs 
or proposed by the authors of Basis and several subsequent stablecoin projects) for it requires a 
discrete actor endowed with economic powers within the system, which is inconsistent with the 
concept of decentralization. 

We can, however, approach the issue from another side: instead of contracting the supply directly 
we can create incentives for 𝑆 to grow, thus locking a required share of circulating coins as deposits 
and granting them zero velocity. As 𝑆 grows, the share of continuously transacted coins decreases, 
which reduces the overall velocity of circulation 𝑉. According to the equation of exchange, it 
produces the same effect on prices as a contraction of the supply. 

Suppose each monetary unit is transacted once a year in average and 𝑆 = 0 (no coins are deposited). 
This means that normally 𝑉 = 1. As long as we maintain 𝑆 = 20, however, 20% of the supply is 
continuously static. We can presume that the velocity should drop to 𝑉 = 0.8 under such conditions, 
but this conclusion will unlikely hold in practice. 

The reason for that is the natural savings rate, which we estimated as 10% previously. If we assume 
the presence of a share naturally holding near-zero velocity even without any deposits (all coins 
circulating freely), then under 𝑆 = 20, 𝑉 will be only 10% lower than under 𝑆 = 0. 

To simplify the model, let us neglect this issue and assume that the economy features 𝑉 = 0.8 under 
𝑆 = 20. Also assume that any changes in 𝑆 cause inverse changes in 𝑉, although the correlation may 
turn out not strictly linear in practice for there are other factors that influence 𝑉. 

Since information on 𝑉 at any given moment can be found on-chain (blockchains contain 
information on all transactions, which makes it possible to precisely assess all shifts in 𝑉), we can peg 
the contractionary algorithm to the actual 𝑉, i.e. the number of coins being transacted annually, but 
at this stage this measure seems excessive. 

Assume 𝛥𝑌 = 0. According to the equation of exchange (𝑀𝑉 = 𝑃𝑌), ceteris paribus, shifts in the 
money supply 𝑀 cause proportional shifts in the price level 𝑃, hence 𝑘𝑖 = 2 should transition into 𝑖 = 2 
in the long run. If we adjust 𝑉, however, we can influence this effect: the decrease of 𝑉 at 2% annual 
rate will nullify the effect produced by 𝑘𝑖 = 2 and keep prices stable, whereas decreasing 𝑉 at a rate 
exceeding 2% will cause price deflation. 

Now, let us return to our framework. In our current setting, the economy grows by 𝛥𝑌 = 3, and since 
the algorithm stopped the contraction at 𝑘𝑖 = 2, this leads to 𝑖 = −1. 

4) Shifting targeted stake pool size 
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Recall the chart for 𝑘𝑖 = 2: The green line shows the 𝑟2 curve at 𝑘𝑖 = 2. The red dashed lines show an 
equilibrium at 𝑆 = 16 and 𝑟 = 3. The green dashed lines show an equilibrium at 𝑆 = 20 and 𝑟 = 2.6. 

Since the algorithm reached the minimal 𝑘𝑖 , but 𝑆 < 𝑆∗, the respective contractionary measures are 
applied. For illustrative purposes, suppose our starting conditions are as described above. 

The algorithm starts increasing 𝑘𝑠 and at the same time adjusting 𝑆∗ respectively. With the growth 
of 𝑘𝑠, 𝑟 rises even under static 𝑘𝑖 , and 𝑆 grows, thus creating a deflationary pressure.  

The pace at which the algorithm escalates the growth of the stake pool size and a respective 
decrease of the share of freely circulating coins defines 𝔼(𝑖) in the economy in a similar way as 𝑘𝑖 
does, but the correlation is inverse. We can perceive 𝑓′(1 − 𝑆) as the contractionary rate in the 
system. 

Although technically 𝑓′(1 − 𝑆) ≠ 𝑓′(1 − 𝑆∗), eventually the escalation of 𝑓′(1 − 𝑆∗) will transition into the 
level of deflationary pressure required to reach an equilibrium at 𝑆∗, which means that after a certain 

𝛥𝑡, 𝑆∗ = 𝑆. Then we can assume that within 𝛥𝑡, 𝑓′(1 − 𝑆) ≅ 𝑓′(1 − 𝑆∗). Given a proper implementation of 
the algorithm, 𝛥𝑡 should be relatively short on the scale of macroeconomics, hence we can express 
the contractionary rate via 𝑓′(1 − 𝑆∗), especially considering that it will likely define 𝔼(𝑖) to a much 
larger degree than the factual growth of 𝑆. 

Let us denote the contractionary rate as 𝑘𝑐 = 𝑓′(1 − 𝑆∗). 𝑘𝑐 = 0 is the default value, which is used by 
the algorithm until stage two contraction is engaged. 𝑘𝑐 < 0 creates a deflationary pressure and is 
used as a contractionary tool. 

After the stake pool reaches the current target, the algorithm stops increasing 𝑘𝑐 . In our case, 
escalating the expectations of deflation by 0.4% will allow the system reaching an equilibrium at 𝑆∗ 
because, as mentioned above, stage two contraction started at 𝑟 = 3|𝑆 = 16; 𝑟 = 2.6|𝑆 = 𝑆∗ = 20. 

Suppose the algorithm escalated the growth of 𝑆∗ so that the number of unstaked coins is expected 
to drop at the rate of 0.4% a year (𝑘𝑐 = −0.4), which has converted into 0.4% of additional deflationary 
pressure. Suppose to achieve that, we increased the contractionary rate exponentially using a 
geometric progression for 𝑘𝑐 with the common ratio 𝑎 = 1.0001 per block starting from 𝑘𝑐1 = −0.01. 
Given 10 second block time, this would take 

𝐵𝜔 =
ln(40)

ln(1.0001)
= 36891 

blocks or approximately 102 hours. 

We can compound 𝑘𝑐 and recalculate the growth of each subsequent 𝑆∗(𝐵𝑛) in the row {𝐵𝑖}𝑖=1
𝜔   

according to 𝑆∗(𝐵𝑛−1), or we can peg the contractionary rate to the constant 𝑆1
∗ = 20 (the size of 𝑆∗ at 

which stage two contraction started). Let us calculate the new setting for 𝐵𝜔 for the latter case. 𝑆∗ 

will grow to  

𝑆𝜔
∗ = 𝑆1

∗ −  
𝑘𝑐1(1 − 𝑆1

∗)(𝑎𝐵𝜔 − 1)

𝐵𝑦(𝑎 − 1)
≅ 20,00098938% 

𝑘𝑠 ∝ 𝑆∗ and will grow to 

𝑘𝑠𝜔 =
𝑆𝜔

∗ 𝑘𝑠1

𝑆1
∗ = 16,000791504% 

We can arbitrarily adjust 𝑎 and 𝑘𝑐1 to tune the algorithm as required and/or use a different growth 
function. With the values we have set, the targeted equilibrium can be reached relatively quick. 

After the equilibrium is reached, the algorithm keeps increasing 𝑆∗ at 𝑘𝑐 = −0.4 and adjusting 𝑘𝑠 
respectively until 𝑆 drops below the target or grows beyond it. If 𝑆 falls short of the target again, the 
algorithm continues contraction. If 𝑆 grows above the target, the algorithm starts to inverse the 
contractionary process by decreasing 𝑘𝑐 so that 𝑘𝑐(𝐵𝑛) = 𝑘𝑐(𝐵𝑛−1) 𝑎⁄  until 𝑘𝑐 = 𝑘𝑐1. Once 𝑆 > 𝑆∗|𝑘𝑐 = 𝑘𝑐1, 
the algorithm sets 𝑘𝑐 = 0 and returns to stage one rule set. 
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We thereby created a contractionary algorithm that can counter drops in demand and balance 
the economy against alternative assets by expanding the stake pool and reducing the velocity of 
circulation of coins without changing the available supply and/or converting native coins into 
other assets. 

IV. From Stablecoin to Stable Economy 

1. Introduction 

Until this point, we considered our currency an alternative monetary asset that is used along with a 
primary fiat currency and described our monetary policy as measures to balance the demand on 
our coins against exogenous stable fiat currencies to keep the exchange rate stable. Such coins are 
typically referred to as “stablecoins” in the crypto community. A setting in which crypto coins are 
used as an ancillary financial asset seems the most realistic at the early stages of crypto money 
adoption. Even the most optimistic enthusiasts wouldn’t argue that we can hardly count on quick 
mass adoption of a cryptocurrency as a legal tender all over the world no matter how well the said 
currency is designed. 

As authorities won’t be willing to let crypto substitute fiat, the described setting will likely prevail in 
the near future. For this reason, it is crucial to develop an algorithm that follows the monetary policy 
orchestrated by centralized authorities: a task that our model copes with well, as was described. 

We believe, however, that cryptocurrency technology possesses a potential to build something 
more than just an ancillary financial asset and that in future cryptocurrencies will eventually 
substitute fiat money in the same way as the latter substituted representative money in the past 
century. 

2. Problem Statement 

To bring our vision to life, our model should be capable of functioning not only as an ancillary 
currency that is pegged to fiat alternatives but also as a standalone monetary system. In the 
absence of a monetary authority and exogenous course to follow, the model should adjust directly 
to fluctuations in demand caused by shifts in macroeconomic indicators (inflation, output, 
employment etc.) 

As we have described, even in the ancillary mode our model features wider capabilities than a 
typical stablecoin: whereas stablecoins adjust to shifts in the exchange rate against a particular 
currency, our model also engages the interest rate channel of monetary transmission and operates 
in conjunction with the entire global economy, which makes it act as a sort of a decentralized 
central bank. 

However, to match the monetary capabilities of CBs, we still need to provide an optimal response 
directly to changes in the targeted economic variables. Modern conventional monetary policy 
implies discrete control of the interest rate by CBs, which assess the entire economic setup and 
establish an optimal interest rate for any given moment. Unfortunately, this is a privilege we cannot 
enjoy given our decentralized setting and the scarcity of data we can look up in the blockchain, 
which is why we need a non-trivial solution in the form of a feedback policy rule that can be 
incorporated into our algorithm. 

To solve this problem, we can turn to well-known and studied solutions from the conventional 
economic framework and see if they are compatible with our model. The Taylor rule and the 
McCallum rule are, among others, the most appropriate to study in terms of our approach. 
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3. Taylor Rule 

The equation of the rule looks as follows: 

𝑟 = 𝑝 + .5𝑦 + .5(𝑝 − 2) + 2 

where 

𝑟 is the federal funds rate, 

𝑝 is the rate of inflation over the previous four quarters, 

𝑦 is the percent deviation of real GDP from a target. 

We can conditionally split the Taylor rule into two parts: 

• A targeted equilibrium. The Taylor rule prescribes that when 𝑦 and 𝑝 are at their targeted 
rates, the CB should set 𝑟 = 2. 

• Deviations from the target. The Taylor rule prescribes to change 𝑟 when 𝑦 and/or 𝑝 deviate 
from their targeted rates. 

Simply put, 1993 version of the Taylor rule implies that the CB should shift the current real interest 
rate by 0.5% whenever inflation and/or real GDP growth shifts by 1% from the target respectively, 
therefore we can state that the rule incorporates the inflation rate and GDP as targeted variables 
and uses the interest rate as a policy tool. 

4. McCallum Rule 

The equation of the rule looks as follows: 

∆𝑚𝑡 = ∆𝑥𝑡
∗ − ∆𝑣𝑡 + 0.5(∆𝑥𝑡

∗ − ∆𝑥𝑡−1) 

where 

∆𝑚𝑡 is the growth rate of MB 

∆𝑥𝑡
∗ is the targeted growth rate of nominal GDP 

∆𝑥𝑡 is the growth rate of nominal GDP 

∆𝑣𝑡 is the growth rate of velocity 

• A targeted equilibrium. The McCallum rule prescribes that when ∆𝑥𝑡 = ∆𝑥𝑡
∗, and the velocity 

remains constant, the CB should inflate 𝑚 at the rate equal to ∆𝑥𝑡
∗, which is suggested to be 3%. 

• Deviations from the target. The McCallum rule prescribes to adjust 𝑚 when ∆𝑥𝑡 deviate from 
∆𝑥𝑡

∗. 

Simply put, the original version of the McCallum rule implies that the CB should raise the rate of the 
monetary base expansion by 0.5% when the output growth falls short of the target by 1% and 
decrease the expansionary rate in the same proportion when the output grows faster than required. 
The expansionary rate should be also adjusted to the long-term growth trend of velocity. We can 
state that the rule incorporates GDP as the targeted variable and uses the monetary base as a 
policy tool. 

5. Interpreting Equation of Exchange 

We can see that the set of targets and policy tools in both mentioned rules doesn’t allow for the 
direct implementation of either of them into our model. We can, however, use the underlying logic 
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of the stated rules to create our own flexible rule that will operate with variables that can be 
determined within our framework. 

Since the Taylor and McCallum rules are both derived from the equation of exchange, the best way 
to start is to take a look at the equation of exchange from the standpoint of our framework and 
available tools. If we assume that 

𝑀𝑉 = 𝑃𝑌 

then 

𝛥𝑀 + 𝛥𝑉 ≅ 𝛥𝑃 + 𝛥𝑌 

Within our framework, ∆𝑀 is the rate of monetary expansion, which we denoted as the issuance rate 
or 𝑘𝑖 . 

𝛥𝑀 = 𝑘𝑖 

𝛥𝑉 can be interpreted as a sum of exogenous shifts in velocity and the contractionary rate of the 
algorithm. 

• Exogenous shifts in velocity ∆𝑉𝑒 occur due to economic prerequisites that are not directly 
controllable by the algorithm. 

• A contractionary rate of the algorithm 𝑘𝑐 is a rate at which the algorithm shifts 𝑆∗ during the 
second stage of contraction. 

𝛥𝑉 = 𝑘𝑐 + ∆𝑉𝑒  

Considering the above, the growth rate version of the equation of exchange now looks as follows: 

𝑘𝑖 + 𝑘𝑐 + ∆𝑉𝑒 ≅ 𝛥𝑃 + 𝛥𝑌 

The right side of the equation, however, cannot be directly interpreted with the help of the tools 
available in our framework: we can obtain data neither on prices, nor on GDP from the blockchain, 
which is why we need to use proxy variables for that purpose. 

6. Interest Rate as Target 

According to the Fisher effect, shifts in the inflation rate cause equal shifts in the nominal interest 
rate. Since we can derive the current nominal interest rate 𝐼 at any given time from 𝑆, we can 
substitute 𝛥𝑃 for 𝛥𝐼. 

𝛥𝑃 ≅ 𝛥𝐼 

As for GDP growth, we can choose different paths: 

a) We can express output through expenditures. Since the information on transactions is 
available on chain, we can approximate aggregate expenditures and use them as a target. The 
precision and accuracy of the approximation, however, is highly dependent on the structure of 
the blockchain: if the blockchain supports only one type of general transactions, the result will 
likely be too loose to be used for a policy rule. Specific types of transactions, however, can help 
us derive a sufficiently accurate value. For example, we can conceptualize special transactions 
that are enforced to be used in case of a purchase of a final product or service by a customer 
for VAT purposes. Such transactions can allow for a more accurate assessment. As far as the 
path of the development of the blockchain is unclear, we would suggest a simpler approach: 

b) We can assume that changes in GDP growth rate transition into shifts of the interest rate. 
In our framework, the increase in GDP growth rate will create upward pressure on the velocity 
of circulation and interest rate. The regression coefficient for the interest rate is not expected 
to be close to 1 as is in case of inflation rate shifts, and we can assume a lesser weight of GDP 
growth within our policy rule. An empirical study by Wang & Hausken (2022) suggests 
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regression coefficients of 0.95 and 0.38 for the interest rate as the dependent variable and the 
deviation in the inflation rate with the deviation in real GDP as independent variables 
respectively in the Taylor rule framework. 

Given the above, we can assume that 

𝛥𝐼 ≅ 𝛥𝑃 + 𝑘𝑦𝛥𝑌 

where 𝑘𝑦 is positive but substantially below 1. The 1993 version of the Taylor rule implies equal 
weight of both Inflation and output gap (𝑎𝜋 = 0.5; 𝑎𝑦 = 0.5), whereas the later modified version 
suggests a lower or even negligible weight of GDP for the monetary policy (𝑎𝜋 = 0.5; 𝑎𝑦 ≥ 0). In that 
regard, our policy rule follows the same logic: with GDP being less influential on the interest rate, 
deviations from potential GDP provoke a weaker reaction from the algorithm, and the policy rule is 
more focused on maintaining the inflation target. This approach also resolves the issue of the cost-
push inflation, which moves GDP and prices in the opposite directions making the Taylor rule 
inefficient. 

It is also worth noting that the output can be directly regulated by other means (such as the fiscal 
policy, government spending etc.) that can be complimentary to our policy rule. Given that national 
GDP and blockchain GDP have completely different meanings in our framework, it is advisable not 
to target output directly and leave its regulation to centralized authorities of the respective 
economic zones. 

Now we have an equation that only contains variables that are obtainable from the blockchain or 
set by the algorithm itself: 

𝑘𝑖 + 𝑘𝑐 ≅ 𝛥𝐼 − ∆𝑉𝑒  

7. Velocity of Circulation 

The Taylor rule ignores the velocity of circulation, whereas the McCallum rule adjusts the rate of the 
monetary base expansion for the long-term velocity growth. McCallum suggests using a 4-year 
average rate at which the velocity of circulation grows due to the technological changes in 
production, which are not related to the current state of the economy and the phase of the business 
cycle. 

We would suggest leaving the issue of the exogenous velocity aside until the economy matures, 
and enough empirical data is collected to make reliable assumptions. At the current stage, we see 
several issues that impede the development of a tenable solution: 

• The speculative motive. On launch and presumably several years on, the demand for coins 
will be predominantly speculative with a slowly growing transactional fraction. In such a 
setting, the velocity can have unpredictable shifts. 

• Layer 2 solutions. The development of layer 2 solutions can outsource a large chunk of 
transactions from the blockchain and add velocity fluctuations that are caused by transfers 
between layers, which will not necessarily correspond to changes in the money demand. 

• Overcomplication of the rule. Our policy rule is driven by expectations and predictions of 
economic agents. A simpler rule makes expectations more consistent. Unnecessary 
complications, on the other hand, can add more uncertainty and discrepancy into the 
behavior of participants and drop the efficiency of the policy. 

Furthermore, in our framework the control of 𝑉 via 𝑘𝑐 is one of the tools of the monetary policy, and 
𝑆, which is a representation of 𝑉, is pegged to 𝐼. The factors that cause pressure on 𝑉 will affect 𝑆 and 
hence 𝐼, which will activate the counter measures from the algorithm, thus making the adjustments 
of the policy rule to the 𝑉𝑒 redundant to a substantial degree. 

For the stated reasons, we suggest excluding ∆𝑉𝑒 from the equation: 
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𝑘𝑖 + 𝑘𝑐 ≅ 𝛥𝐼 

We should also note that although the information on the volume of transactions is typically 
available on blockhains, certain technical solutions can render obtaining such data difficult or even 
impossible. 

For example, one of the potential solutions to the issue of financial privacy that may be 
implemented in Dynemix is an additive homomorphic cryptosystem with ZK proofs to encrypt 
balances and hide user interaction. Such an encryption would conceal both the volume and the 
number of transactions, thus rendering any information on 𝑉𝑒 inaccessible. 

In case if such technical solutions are implemented, we can only opt for neglecting the exogenous 
velocity entirely. 

8. Response Time 

We can conditionally outline three flavors of the rule depending on the response time while keeping 
in mind that we can arbitrarily chose anything in between and apply discrete gradual response time 
shifts. 

a) Instant response. Blockchain technology allows for the adjustment of the monetary policy 
with each newly created block. Although it still takes a certain amount of time to occur, in 
terms of macro economy such small time intervals are negligible, which is why we can call a 
response as quick as a single block time instant. An instant response means that the policy 
applied to block 𝐵𝑛 is formed according to the deviation of the targeted variable in block 𝐵𝑛−1, 
which is the quickest response time possible. 

b) Long-term response. We can smoothen the response by picking up a discrete time interval to 
calculate the average change in the targeted variable. A long-term response means that the 
policy applied to block 𝐵𝑛 is formed according to the average change in the targeted variable 

that occurred throughout the sequence of blocks {𝐵𝑖}𝑛−𝑡
𝑛−1 where 𝑡 is 𝑑𝑒𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑖𝑚𝑒

𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒
. 

c) Interval response. We can also apply a variation of the instant response that repeats after an 
arbitrarily chosen time interval instead of each subsequent block. An interval response means 
that the policy applied to block 𝐵𝑡𝑛 is formed according to the deviation of the targeted 

variable in block 𝐵𝑡𝑛−1 where 𝑡 is 𝑑𝑒𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑖𝑚𝑒

𝑏𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒
. 

The interval response variation is vulnerable to attacks. The security of the algorithm depends 
inversely on the length of the time interval, which is why the interval variation of the instant 
response is not advisable to implement. 

Changing the response time from instant to long-term should change the main driver of the 
monetary policy from expectations to the combination of expectations and retrospective analysis 
with the influence of the latter growing more with a longer time interval chosen. 

In relation to blockchains, time intervals should be substituted by a number of blocks mined prior to 
the block to which the calculations are applied because depending on the design of the blockchain 
a block time is not necessarily constant. Since Dynemix operates in a lock-step execution manner, 
however, the block time in our system is constant, and each discrete number of blocks corresponds 
to a respective discrete time interval, which allows us to operate with time periods here and 
henceforth in terms of this paper. 

9. Rule Coefficient 

The Taylor rule is based on the principle of applying a surpassive pressure on inflation through a 
respective change in the policy tool: if 𝔼(𝑖) shifts by 𝑛 from the target, the CB should shift the 
nominal interest rate in the same direction by 𝑛 + 𝑎 where 𝑎 > 0. Particularly, Taylor suggests 𝑎 =



23 

 

0.5𝑛. This allows not only to balance the occurred shift in inflation but also to push inflation back to 
the targeted value. 

We can use the same principle in our policy. If 𝐼 shifts by 𝑛, we need to balance it with a respective 
shift of 𝑘𝑖 and/or 𝑘𝑐 by 𝑛 and add an additional value on top of that. 

Since a cryptocurrency is not supposed to be an exclusive legal tender within the economic zone 
but rather a mere payment option (at least during the transitional period), and hence both 
speculative and transactional demand can fluctuate massively, we suggest a stronger policy 
reaction. We can use a higher coefficient or even switch to an exponential function. Suppose we set 
𝑎 = 2 as the stage one rule coefficient. 

10. Interpretation of Rule 

Now that we have all the variables and coefficients established, we can write an equation of the 
policy rule: 

𝑘𝑖 + 𝑘𝑐 = 2(𝐼∗ − 𝐼) + 𝑘𝑖
∗ 

Where: 

𝑘𝑖 is the issuance rate; 

𝑘𝑐 is the contractionary rate; 

𝐼 is the current nominal interest rate; 

𝐼∗ is the targeted nominal interest rate; 

𝑘𝑖
∗ is an assumed issuance rate that maintains the targeted inflation rate and potential GDP. 

Suppose we agreed that the potential GDP growth rate is 3%, the targeted inflation rate is 2% and 
the natural real interest rate is 2%. Then we can rewrite the equation as follows: 

𝑘𝑖 + 𝑘𝑐 = 2(4 − 𝐼) + 5 

11. Stake Pool and Velocity 

Now that we established the economic interpretation of the rule, we need to solve final technical 
issues to complete the algorithm. One of such is the relationship between 𝑆 and 𝑉 during an 
expansion. 

Shifts in 𝐼 correspond to respective shifts in 𝑆, which puts pressure on 𝑉. 

Suppose the system is at the targeted equilibrium (𝐼 = 4;  𝑆 = 20; 𝑘𝑖 = 5; 𝑘𝑠 = 16). After an arbitrary 
event, 𝔼(𝑖) instantly drops from 2% to 0, which means that the same real interest is now acquired at 
𝐼 = 2. 

If we opt for the instant response mode, 𝑘𝑖 will be immediately raised to 𝑘𝑖 = 9, and the equilibrium 
will shift to 𝑆 = 72, which means that 𝛥(1 − 𝑆) = 65 or, in other words, the share of unlocked 
(continuously transacted coins) should near instantly drop by 65%. 

If we opt for the long-term response mode, the adjustment of 𝑘𝑖 will take time, during which 𝑆 will 
increase according to the occurred changes in 𝐼. The size of 𝑆 that corresponds to 𝐼 = 2 in the 
targeted setup is 40%, which means that 𝛥(1 − 𝑆) = 25 or, in other words, the share of unlocked 
(continuously transacted coins) should near instantly drop by 25% and continue gradually 
decreasing afterwards. 

In both cases, such an event will make a significant impact on the overall velocity. We can assume 
that 𝑉𝑒 will increase inhibiting the impact to a certain degree, which can only be assessed via 
empirical studies, but due to the limitations of possible 𝑉𝑒 growth this effect will unlikely be strong. 
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A significant rapid drop of 𝑉 will put an upward pressure on 𝐼 bouncing 𝑆 back. However, we expect 
the effect of velocity to spread much slower than the effects of the interest rate or inflation, which 
can create a pendulum cycle. To mitigate this issue, we need to adjust the setup to make 𝑆 return to 
𝑆 = 𝑆∗ without the need to wait until the entire transmissional scheme of all respective effects 
completes. 

We can achieve this by adjusting 𝑘𝑠. In the ancillary mode, we used a constant value for 𝑘𝑠 until the 
second stage of the contractionary algorithm was engaged, and the equilibrium at the stake pool 
target was reached by gradually changing 𝑘𝑖 . Now that we pegged 𝑘𝑖 to 𝐼 by the rule coefficient, we 
need to use 𝑘𝑠 as a technical tool to control the size of the stake pool. Suppose we set 

𝑘𝑠 =
𝐼𝑆∗

𝑘𝑖

 

In this case, 𝑘𝑠 will be constantly adjusted so that 𝑆 = 𝑆∗. 

12. liquidity Trap. 

In our setting, 𝐼 is apparently zero-bound since 𝐼 = 𝑘𝑠𝑘𝑖 𝑆⁄ , and all variables on the right side of the 
equation can only be non-negative, which makes the policy rule technically inapplicable under 𝛥𝐼 <

−4. However, the realistic lower boundary of 𝐼 is actually higher than 0. 

Suppose the system is at the targeted equilibrium (𝐼 = 4;  𝑆 = 20; 𝑘𝑖 = 5; 𝑘𝑠 = 16.) After an arbitrary 
event, 𝔼(𝑖) instantly drops from 2% to −1.9%, which means that the same real interest is now 
acquired at 𝐼 = 0.1. 

Under the instant response, the setup will reconfigure to 𝐼 = 0.1;  𝑆 = 20; 𝑘𝑖 = 12.8; 𝑘𝑠 = 0.15625, and 𝐼 
curve will look as follows: 

 

We can see that under 𝑆 > 10 the curve becomes nearly flat. In fact, within the band 10 < 𝑆 < 100, 𝐼 
deviates only by 0.18%, which can be considered negligible by most agents. Under such conditions, 𝑆 
can become inelastic to further adjustments of the policy tools. 

If 𝐼 drops sufficiently low, we face a similar issue to the Keynesian concept of a liquidity trap, which 
can be overcome by measures similar to those proposed by Milton Friedman: we can still raise the 
rate of the monetary expansion and increase the helicopter share. 

First, we should set a sufficiently high lower boundary for 𝐼 at which we unpeg 𝐼 from 𝑘𝑖 and use a 
different rule coefficient 𝑎. We would suggest switching to an exponential function. 

If 𝐼 < 𝐼𝑚𝑖𝑛 , the algorithm starts to increase 𝑘𝑖 exponentially until 𝐼 = 𝐼𝑚𝑖𝑛 . Since 𝑘𝑠 is inversely related to 
𝑘𝑖 during the expansion, it will decrease simultaneously thus increasing the helicopter share. These 
measures will continue the expansionary policy until an equilibrium is found at 𝑆∗. Once 𝐼 ≥ 𝐼𝑚𝑖𝑛 , the 
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reverse process is engaged until the system comes to an equilibrium at 𝑆∗|𝐼 = 𝐼𝑚𝑖𝑛;  𝑘𝑖 = 11, and the 
algorithm returns to the values established by the policy rule. 

13. Algorithm in nutshell 

Although the algorithm operates with 𝑆 as the direct policy target since it is a value obtained from 
the blockchain, we will express 𝑆 through 𝐼 when separating stages of the algorithm to maintain 
compliance with the economic interpretation of the policy rule for illustrative purposes. A variable 
value for a particular block is denoted as 𝐼(𝐵𝑛), which means “𝐼 for block 𝐵𝑛”. 

By default, the algorithm is preset to the following values: 

𝐼∗ = 4. The targeted nominal interest rate that the algorithm is designed to maintain. 

𝑆∗ = 20. The optimal size of the stake pool under the targeted conditions. 

𝑘𝑖 = 5. The issuance rate that corresponds to the targeted conditions. 

𝑘𝑠 = 16. The minters’ share coefficient that corresponds to the targeted conditions. 

a) 𝐼𝑚𝑖𝑛 ≤ 𝐼 < 𝐼∗ (stage 1 expansion) 

𝑘𝑖(𝐵𝑛)  = 2(4 − 𝐼(𝐵𝑛−1)) + 5 

𝑘𝑠(𝐵𝑛) =
𝐼𝑆∗

𝑘𝑖(𝐵𝑛)
 

𝑆∗(𝐵𝑛) = 20 

𝑘𝑐(𝐵𝑛) = 0 

b) 𝐼 < 𝐼𝑚𝑖𝑛 (stage 2 expansion) 

𝑘𝑖(𝐵𝑛) = 𝑎𝑘𝑖(𝐵𝑛−1) until 𝐼 ≥ 𝐼𝑚𝑖𝑛 

If 𝐼 ≥ 𝐼𝑚𝑖𝑛 and 𝑘𝑖 > 11 then 𝑘𝑖(𝐵𝑛) = 𝑘𝑖(𝐵𝑛−1) 𝑎⁄  until 𝑘𝑖 ≤ 11 

If 𝐼 ≥ 𝐼𝑚𝑖𝑛 and 𝑘𝑖 ≤ 11 return to stage 1 

𝑘𝑠(𝐵𝑛) =
𝐼𝑆∗

𝑘𝑖(𝐵𝑛)
 

𝑆∗(𝐵𝑛) = 20 

𝑘𝑐(𝐵𝑛) = 0 

c) 𝐼∗ < 𝐼 ≤ 𝐼𝑐 (stage 1 contraction) 

𝑘𝑖(𝐵𝑛)  = 2(4 − 𝐼(𝐵𝑛−1)) + 5 

𝑘𝑠(𝐵𝑛) =
𝐼𝑆∗

𝑘𝑖(𝐵𝑛)
 

𝑆∗(𝐵𝑛) = 20 

𝑘𝑐(𝐵𝑛) = 0 

d) 𝐼 > 𝐼𝑐 (stage 2 contraction) 

𝑘𝑖(𝐵𝑛) = 𝑘𝑖𝑚𝑖𝑛 

𝑘𝑐(𝐵𝑛) = 2(4 − 𝐼(𝐵𝑛−1)) + 5 − 𝑘𝑖(𝐵𝑛) 
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𝑆∗(𝐵𝑛) = 𝑆∗(𝐵𝑛−1) −
𝑘𝑐(𝐵𝑛)(100 − 𝑆∗(𝐵𝑛−1))

𝐵𝑦

 

𝑘𝑠(𝐵𝑛) =
𝑆∗(𝐵𝑛)𝑘𝑠(𝐵𝑛−1)

𝑆∗(𝐵𝑛−1)
 

V. Additional features 

1. Attacks and Security 

So far, we do not see any potential rational attack vectors that can pose a serious threat, given a 
proper technical implementation. That being said, the model requires some non-trivial solutions 
from the underlying blockchain protocol, the effectiveness of which can determine the overall 
robustness of the system. 

Since 𝑆 is the main and the only indicator that triggers shifts in our monetary policy, the adversary 
would be required to control 𝑆 either to keep it artificially low, which triggers contractionary 
measures, or artificially high, which provokes expansionary measures. 

1) Undue expansion 

To achieve his goal, the adversary needs to make 𝑆 exceed 𝑆∗. Suppose the adversary possesses a 
significant number of coins that are not currently staked. By the start of the attack, the system stays 
at equilibrium and 𝑆 = 𝑆∗. The adversary instantly deposits all coins in his possession, which makes 𝑆 
grow significantly. 

Since the actions of the adversary decreased 𝐼 for all depositors, but the overall demand for capital in 
the economy didn’t change, other stakeholders seeking for optimal investment opportunities will 
withdraw their deposits and convert them into other assets that provide a higher yield. In a short 
time, 𝑆 will return to an equilibrium with the actual demand for coins, which renders the adversary’s 
actions pointless. 

To provoke a continuous expansion, the adversary would need to keep 𝑆 oversized for a long period, 
which requires him to possess a number of coins exceeding the difference between 𝑆∗ and the 
natural savings rate. Given that we have chosen a proper target, this would normally require more 
than 10% of the available supply. At the same time, during the attack the adversary will suffer the 
following negative consequences: 

• his coins will devaluate due to the excessive 𝑘𝑖 and resulting inflation caused by his actions; 

• he will lose an opportunity to gain more interest by investing into higher yielding assets. 

Summarizing the statements above we can conclude that such an attack is unlikely to be 
committed. 

At this point, it is time to mention the technical requirements for the underlying blockchain that are 
essential for the model to be robust. One of such is a fast deposit withdrawal. Unfortunately, as 
known PoS blochchain implementations suffer from the nothing-at-stake problem, which is 
commonly solved by locking deposits for a long period, we have encountered no appropriate 
blockchains except Dynemix so far. 

2) Undue contraction 

To trigger contractionary measures, the adversary needs to shrink 𝑆 below 𝑆∗. 
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Suppose the adversary deposited all coins in his possession, as was described above, and 𝑆 settled 
down to 𝑆∗. Now, after the adversary instantaneously withdraws his entire deposit, 𝑆 shrinks 
significantly below 𝑆∗. As 𝐼 for stakeholders increases, some agents convert their savings into stakes 
and 𝑆 restores its targeted size. Unlike the previous scenario, no matter how much resources the 
adversary possesses, he cannot keep 𝑆 continuously below 𝑆∗, unless he has an opportunity to 
censor stake transactions on the blockchain. 

This leads us to another technical requirement for the underlying blockchain: censorship resilience. 

In current blockchain implementations, transactions to be added into a block are selected by the 
block proposer at his own discretion. Such a design opens the censorship opportunities and thus 
allows the adversary to control the size of the stake pool by rejecting deposits of other stakeholders, 
which can undermine the effectiveness of our monetary model to a various extent up to rendering it 
completely impotent. 

In Dynemix, we developed a novel block proposal algorithm called Guess My Block, which provides 
sufficient censorship resilience guarantees and assures that the adversary cannot arbitrarily censor 
any transactions unless he controls a consensus supermajority. 

2. Fractional Reserve Banking 

So far, we have been operating without the consideration of credit money. Due to the properties of 
blockchains, we cannot endow any specific actors with the authority to issue new coins. Otherwise, 
the decentralized nature of the blockchain will be compromised. We can, however, conceptualize a 
model of a fractional reserve banking via a smart contract. 

Suppose we added a smart contract that endows certain actors that can be appointed by a certain 
authority with the power to create tokens of a special class. Suppose we grant a CB the power to 
issue and void “licences” for the token issuance. Issued tokens are pegged to the native coins of the 
system and the CB takes on liabilities to control the exchange rate and keep it 1: 1. New tokens 
circulate alongside with native coins and are used as an equal legal tender within the country. 

This setup creates prerequisites for credit money. With its adoption, banks can pay an interest on 
money deposited to their accounts and use the accumulated reserves to lend newly created tokens. 
The reserve requirement constrains the expansion of credit in the same way as in conventional 
economies. 

Under such conditions, the transmission scheme will change. Since credit interest rates are related 
to the interest rate for minters, the expansion or contraction of credit will impact the balance 
between the demand for money and the available supply, which will shift the interest rate and 
provoke respective measures from the algorithm. A mass adoption of credit money or other 
derivatives may require adjustments of the algorithm, but the fundamentals will stay intact, and the 
system should function properly in the transformed setting. 

3. Islamic-Friendly Monetary System. 

Islamic religious law called Shariah prohibits any interest on money. For that reason, the 
conventional financial system, which is based on credit, cannot be adopted by Islamic governments 
on the full scale. 

Fractional reserve banking allows for the circulation of credit money and thus secures endogenous 
control of the money supply, which contributes to price stability. The circulation of credit money 
allows CBs to use interest rates as the main channel of the monetary policy. In the absence of 
market interest rates, Islamic governments must rely on different channels, such as the Islamic 
banking lending channel and the exchange rate channel. Conducting an efficient monetary policy 
under such conditions is a challenging task, and many countries that adopted Islamic banking 
permanently experience economic difficulties. 
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The proposed solution, however, is fully compliant to Shariah principles and allows building a full-
scale monetary system capable of targeting required economic indicators. The key feature of our 
approach is that, unlike the conventional system, we do not rely on credit money, and credit in 
general is factored out. Our model works in a similar way in the presence of both Islamic and 
conventional banking. 

The interest that stakeholders receive in our system, although having been described as an interest 
on money for simplicity, is actually a payment for a service. Due to the design of blockchains, 
stakeholders do not lend their coins to third parties, and their funds stay in their sole possession 
regardless of being staked or free. The reward they receive is a payment dispatched by the system 
itself for creating blocks and assuring the system’s security. 

VI. Conclusions 
a) We created a model of the first decentralized algorithmic central bank. 

Since the creation of Bitcoin, there were multiple attempts to address the problem of volatility 
in crypto economies. Unlike previous projects, which were devoted to the development of a 
so-called “stablecoin”, we took a step further and created an asset than can not only follow the 
exogenous course by being pegged to allegedly stable off-chain assets but sustain a targeted 
equilibrium endogenously. 

We can incorporate our variation of a feedback policy rule similar to the Taylor or McCallum 
rules with a targeted 𝑟∗ to create a functional stable economy that satisfies the needs of all 
participants and turns our model into a fully-fledged “decentralized algorithmic central bank”. 

b) Our model is completely independent and decentralized. 

All previous attempts of creating a so-called “stablecoin” featured a common downside: no 
matter how sophisticated the solutions were, they always relied on external sources and were 
pegged to exogenous assets. 

Our solution makes a major breakthrough by introducing a concept that relies exclusively on 
on-chain data, is fully algorithmic, and is not related to any particular off-chain asset (USD, 
gold, SDR etc.) Instead, our model operates in conjunction with the entire global economy. 

c) Our model doesn’t require any ancillary assets unlike algorithmic stablecoins. 

Currently available algorithmic stablecoins operate with a sort of open market operations: a 
special asset is exchanged for native coins when a contraction is needed and repurchased 
back as a part of expansionary measures. 

The design of such assets endows them with the properties of securities, which puts the 
system under the control of regulators, creates significant legal obstructions, and severely 
undermines decentralization. 

Our algorithm operates directly with native utility coins, which allows us to avoid all the 
respective difficulties occurring with the introduction of ancillary assets, including sanctions 
from financial regulators. 

d) Our model is highly egalitarian. 

We managed to create a model that will embody the ideas of fair egalitarian wealth 
distribution. With the help of helicopter coins, our model impedes the concentration of power 
and doesn’t allow strong actors to sustain their influence endlessly simply by staking all their 
coins and increasing the relative share in possession. 
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Since banks and credit are removed from our monetary model, strong financial actors can no 
longer take direct advantage of a monetary expansion and receive or create money out of thin 
air. Although governments can still create their own banking systems based on fractional 
reserve, they can only implement this via derivatives, whereas the underlying layer one 
blockchain cannot be directly affected by their actions. 

e) Our model is expected to be more efficient than the conventional discrete model. 

The effectiveness of a monetary policy is fundamentally limited by the credibility of a monetary 
authority. If we assume that future expectations are the main driver of behavior in a rational 
environment, the vector of economic trends is directed not by a set of conditions observed at 
any given time but mostly by expected upcoming changes. 

In practice, credibility can be a weak point of a monetary policy. Despite being commonly 
positioned as independent actors, CBs often suffer from governmental interference, which can 
undermine credibility and render applied measures less effective. The governing boards of CBs 
can also be affiliated with commercial banks, which further aggravates the issue. 

Our model is deprived of that flaw for it is completely decentralized and trustless. There can be 
no question of credibility or impartiality of an algorithm that is incorporated into a blockchain 
system, which makes the monetary policy highly efficient in terms of managing expectations 
and driving the behavior of participants in a desired direction. We can state that we 
incorporate an efficient flexible policy rule, which solves the problem of time inconsistency as 
long as other issues. 

f) Our model can seamlessly operate with conventional and Islamic banking. 

Most of the countries that follow Islamic financial doctrine suffer from severe economic 
difficulties for Islamic banking is not consistent with conventional banking, which is based on 
credit. 

Since our algorithm doesn’t rely on credit, it us fully compliant with Islamic principles and can 
be adopted on the full scale by Muslim countries, thus solving the problem of seamless 
integration of the Islamic banking into the global financial infrastructure and allowing to 
overcome economic difficulties that many of Muslim countries are currently facing. 


